These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 28822588)
1. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties. Qajar J; Arns CH J Contam Hydrol; 2017 Sep; 204():11-27. PubMed ID: 28822588 [TBL] [Abstract][Full Text] [Related]
2. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition. Qajar J; Arns CH J Contam Hydrol; 2016 Sep; 192():60-86. PubMed ID: 27389612 [TBL] [Abstract][Full Text] [Related]
3. Pore-Scale Geochemical Reactivity Associated with CO Noiriel C; Daval D Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082 [TBL] [Abstract][Full Text] [Related]
4. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. Menke HP; Bijeljic B; Andrew MG; Blunt MJ Environ Sci Technol; 2015 Apr; 49(7):4407-14. PubMed ID: 25738415 [TBL] [Abstract][Full Text] [Related]
5. From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties. Bauer D; Youssef S; Han M; Bekri S; Rosenberg E; Fleury M; Vizika O Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011133. PubMed ID: 21867139 [TBL] [Abstract][Full Text] [Related]
6. Effect of Mineral Dissolution/Precipitation and CO Xu R; Li R; Ma J; He D; Jiang P Acc Chem Res; 2017 Sep; 50(9):2056-2066. PubMed ID: 28812872 [TBL] [Abstract][Full Text] [Related]
7. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment. Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767 [TBL] [Abstract][Full Text] [Related]
8. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. Gouze P; Luquot L J Contam Hydrol; 2011 Mar; 120-121():45-55. PubMed ID: 20797806 [TBL] [Abstract][Full Text] [Related]
9. Reservoir condition pore-scale imaging of multiple fluid phases using X-ray microtomography. Andrew M; Bijeljic B; Blunt M J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741751 [TBL] [Abstract][Full Text] [Related]
10. Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure. Smith MM; Sholokhova Y; Hao Y; Carroll SA Environ Sci Technol; 2013 Jan; 47(1):262-8. PubMed ID: 22831758 [TBL] [Abstract][Full Text] [Related]
11. Alteration and Erosion of Rock Matrix Bordering a Carbonate-Rich Shale Fracture. Deng H; Voltolini M; Molins S; Steefel C; DePaolo D; Ajo-Franklin J; Yang L Environ Sci Technol; 2017 Aug; 51(15):8861-8868. PubMed ID: 28682076 [TBL] [Abstract][Full Text] [Related]
12. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling. Poonoosamy J; Kosakowski G; Van Loon LR; Mäder U J Contam Hydrol; 2015; 177-178():1-17. PubMed ID: 25805363 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Pore-Scale Modeling of Fracture Evolution in Heterogeneous Carbonate Caprock Subjected to CO Fazeli H; Patel RA; Ellis BR; Hellevang H Environ Sci Technol; 2019 Apr; 53(8):4630-4639. PubMed ID: 30945855 [TBL] [Abstract][Full Text] [Related]
14. Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling. Canal J; Delgado J; Falcón I; Yang Q; Juncosa R; Barrientos V Environ Sci Technol; 2013 Jan; 47(1):159-67. PubMed ID: 22770515 [TBL] [Abstract][Full Text] [Related]
15. Pore scale image analysis for petrophysical modelling. Pal AK; Garia S; Ravi K; Nair AM Micron; 2022 Mar; 154():103195. PubMed ID: 35051800 [TBL] [Abstract][Full Text] [Related]
16. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO Cheshire MC; Stack AG; Carey JW; Anovitz LM; Prisk TR; Ilavsky J Environ Sci Technol; 2017 Jan; 51(1):692-698. PubMed ID: 27958703 [TBL] [Abstract][Full Text] [Related]
17. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone. Sell K; Enzmann F; Kersten M; Spangenberg E Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476 [TBL] [Abstract][Full Text] [Related]
18. Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography. Al-Khulaifi Y; Lin Q; Blunt MJ; Bijeljic B Environ Sci Technol; 2017 Apr; 51(7):4108-4116. PubMed ID: 28287717 [TBL] [Abstract][Full Text] [Related]
19. Hydraulic and Mechanical Impacts of Pore Space Alterations within a Sandstone Quantified by a Flow Velocity-Dependent Precipitation Approach. Wetzel M; Kempka T; Kühn M Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664508 [TBL] [Abstract][Full Text] [Related]
20. Dual-porosity micromodels for studying multiphase fluid flow in carbonate rocks. Wolf FG; Siebert DN; Carreño MNP; Lopes AT; Zabot AM; Surmas R Lab Chip; 2022 Nov; 22(23):4680-4692. PubMed ID: 36346381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]