These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28822739)

  • 1. Experimental characterization and model identification of the nonlinear compressible material behavior of lung parenchyma.
    Birzle AM; Martin C; Yoshihara L; Uhlig S; Wall WA
    J Mech Behav Biomed Mater; 2018 Jan; 77():754-763. PubMed ID: 28822739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental setups - Exemplified and detailed for lung parenchyma.
    Birzle AM; Martin C; Uhlig S; Wall WA
    J Mech Behav Biomed Mater; 2019 Jun; 94():126-143. PubMed ID: 30884281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A viscoelastic nonlinear compressible material model of lung parenchyma - Experiments and numerical identification.
    Birzle AM; Wall WA
    J Mech Behav Biomed Mater; 2019 Jun; 94():164-175. PubMed ID: 30897504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical identification method for the non-linear viscoelastic compressible behavior of soft tissue using uniaxial tensile tests and image registration - application to rat lung parenchyma.
    Bel-Brunon A; Kehl S; Martin C; Uhlig S; Wall WA
    J Mech Behav Biomed Mater; 2014 Jan; 29():360-74. PubMed ID: 24184860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constituent-specific material behavior of soft biological tissue: experimental quantification and numerical identification for lung parenchyma.
    Birzle AM; Hobrack SMK; Martin C; Uhlig S; Wall WA
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1383-1400. PubMed ID: 31053928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material model of lung parenchyma based on living precision-cut lung slice testing.
    Rausch SM; Martin C; Bornemann PB; Uhlig S; Wall WA
    J Mech Behav Biomed Mater; 2011 May; 4(4):583-92. PubMed ID: 21396607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of human lung parenchyma.
    Gao J; Huang W; Yen RT
    Biomed Sci Instrum; 2006; 42():172-80. PubMed ID: 16817604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behavior of lung parenchyma as a compressible continuum: a theoretical analysis.
    Tani J; Nakamura M; Sasaki H; Okubo T; Takishima T; Hildebrandt J
    Tohoku J Exp Med; 1982 Jun; 137(2):125-36. PubMed ID: 7112541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characterization of porcine liver properties for computational simulation of indentation on cancerous tissue.
    Yang Y; Li K; Sommer G; Yung KL; Holzapfel GA
    Math Med Biol; 2020 Dec; 37(4):469-490. PubMed ID: 32424396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive modeling of human liver based on in vivo measurements.
    Mazza E; Grau P; Hollenstein M; Bajka M
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):726-33. PubMed ID: 18982669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuum model for tension-compression asymmetry in skeletal muscle.
    Latorre M; Mohammadkhah M; Simms CK; Montáns FJ
    J Mech Behav Biomed Mater; 2018 Jan; 77():455-460. PubMed ID: 29028597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compressible anisotropic hyperelastic model with
    Wang MN; Liu FJ
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1277-1286. PubMed ID: 32692257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.