These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 28822917)
1. Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes. Abbas S; Kini A; Srivastava VM; M MT; Nair SC; Abraham A; Mathews V; George B; Kumar S; Venkatraman A; Srivastava A Blood Cells Mol Dis; 2017 Jul; 66():37-46. PubMed ID: 28822917 [TBL] [Abstract][Full Text] [Related]
2. Bone marrow niche in the myelodysplastic syndromes. Cogle CR; Saki N; Khodadi E; Li J; Shahjahani M; Azizidoost S Leuk Res; 2015 Oct; 39(10):1020-7. PubMed ID: 26276090 [TBL] [Abstract][Full Text] [Related]
4. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Abe-Suzuki S; Kurata M; Abe S; Onishi I; Kirimura S; Nashimoto M; Murayama T; Hidaka M; Kitagawa M Lab Invest; 2014 Nov; 94(11):1212-23. PubMed ID: 25199050 [TBL] [Abstract][Full Text] [Related]
5. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model. Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615 [TBL] [Abstract][Full Text] [Related]
6. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Medyouf H; Mossner M; Jann JC; Nolte F; Raffel S; Herrmann C; Lier A; Eisen C; Nowak V; Zens B; Müdder K; Klein C; Obländer J; Fey S; Vogler J; Fabarius A; Riedl E; Roehl H; Kohlmann A; Staller M; Haferlach C; Müller N; John T; Platzbecker U; Metzgeroth G; Hofmann WK; Trumpp A; Nowak D Cell Stem Cell; 2014 Jun; 14(6):824-37. PubMed ID: 24704494 [TBL] [Abstract][Full Text] [Related]
7. Identification and hematopoietic potential of CD45- clonal cells with very immature phenotype (CD45-CD34-CD38-Lin-) in patients with myelodysplastic syndromes. Ogata K; Satoh C; Tachibana M; Hyodo H; Tamura H; Dan K; Kimura T; Sonoda Y; Tsuji T Stem Cells; 2005 May; 23(5):619-30. PubMed ID: 15849169 [TBL] [Abstract][Full Text] [Related]
8. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Pleyer L; Valent P; Greil R Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944 [TBL] [Abstract][Full Text] [Related]
9. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Will B; Zhou L; Vogler TO; Ben-Neriah S; Schinke C; Tamari R; Yu Y; Bhagat TD; Bhattacharyya S; Barreyro L; Heuck C; Mo Y; Parekh S; McMahon C; Pellagatti A; Boultwood J; Montagna C; Silverman L; Maciejewski J; Greally JM; Ye BH; List AF; Steidl C; Steidl U; Verma A Blood; 2012 Sep; 120(10):2076-86. PubMed ID: 22753872 [TBL] [Abstract][Full Text] [Related]
10. Bone marrow niches in myeloid neoplasms. Kitagawa M; Kurata M; Onishi I; Yamamoto K Pathol Int; 2020 Feb; 70(2):63-71. PubMed ID: 31709722 [TBL] [Abstract][Full Text] [Related]
11. What is the role of the microenvironment in MDS? Calvi LM; Li AJ; Becker MW Best Pract Res Clin Haematol; 2019 Dec; 32(4):101113. PubMed ID: 31779976 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Oliveira FM; Lucena-Araujo AR; Favarin Mdo C; Palma PV; Rego EM; Falcão RP; Covas DT; Fontes AM Exp Hematol; 2013 Feb; 41(2):198-208. PubMed ID: 23092930 [TBL] [Abstract][Full Text] [Related]
13. Bone marrow mesenchymal stem cells in myelodysplastic syndromes: cytogenetic characterization. Song LX; Guo J; He Q; Yang LP; Gu SC; Zhang X; Wu LY; Li X; Chang CK Acta Haematol; 2012; 128(3):170-7. PubMed ID: 22890308 [TBL] [Abstract][Full Text] [Related]
14. Effects of rigosertib on the osteo-hematopoietic niche in myelodysplastic syndromes. Balaian E; Weidner H; Wobus M; Baschant U; Jacobi A; Mies A; Bornhäuser M; Guck J; Hofbauer LC; Rauner M; Platzbecker U Ann Hematol; 2019 Sep; 98(9):2063-2072. PubMed ID: 31312928 [TBL] [Abstract][Full Text] [Related]
15. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Varga G; Kiss J; Várkonyi J; Vas V; Farkas P; Pálóczi K; Uher F Pathol Oncol Res; 2007; 13(4):311-9. PubMed ID: 18158566 [TBL] [Abstract][Full Text] [Related]
16. GATA-1 transcription factor is up-regulated in bone marrow hematopoietic progenitor CD34(+) and erythroid CD71(+) cells in myelodysplastic syndromes. Maratheftis CI; Bolaraki PE; Voulgarelis M Am J Hematol; 2007 Oct; 82(10):887-92. PubMed ID: 17570514 [TBL] [Abstract][Full Text] [Related]
17. Germline mutations in the bone marrow microenvironment and dysregulated hematopoiesis. Miller LH; Qu CK; Pauly M Exp Hematol; 2018 Oct; 66():17-26. PubMed ID: 30076950 [TBL] [Abstract][Full Text] [Related]
18. Recurrent Abnormal Clones in Myelodysplastic Syndrome Marrow Originate from Cells at a Pluripotent Stem Level and Maintain Their Early Differentiation Potency. Qi H; Qingxia Z; Xiao L; Lingyun W; Feng X; Zheng Z; Chunkang C Cancer Invest; 2015; 33(8):369-77. PubMed ID: 26135215 [TBL] [Abstract][Full Text] [Related]
19. Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. Flores-Figueroa E; Gratzinger D Int J Mol Sci; 2016 Apr; 17(4):553. PubMed ID: 27089321 [TBL] [Abstract][Full Text] [Related]
20. Assessment of stromal function, and its potential contribution to deregulation of hematopoiesis in the myelodysplastic syndromes. Tauro S; Hepburn MD; Bowen DT; Pippard MJ Haematologica; 2001 Oct; 86(10):1038-45. PubMed ID: 11602409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]