BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28822938)

  • 21. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.
    Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E
    Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Column study for the evaluation of the transport properties of polyphenol-coated nanoiron.
    Mystrioti C; Papassiopi N; Xenidis A; Dermatas D; Chrysochoou M
    J Hazard Mater; 2015 Jan; 281():64-69. PubMed ID: 24953183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media.
    Tsakiroglou C; Terzi K; Sikinioti-Lock A; Hajdu K; Aggelopoulos C
    Sci Total Environ; 2016 Sep; 563-564():866-78. PubMed ID: 26875604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media.
    Yang Z; Qiu X; Fang Z; Pokeung T
    Water Sci Technol; 2015; 71(12):1800-5. PubMed ID: 26067499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances.
    Kumar N; Labille J; Bossa N; Auffan M; Doumenq P; Rose J; Bottero JY
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9269-9277. PubMed ID: 28224341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17200-9. PubMed ID: 27215990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column.
    Hosseini SM; Tosco T
    Water Res; 2013 Jan; 47(1):326-38. PubMed ID: 23141767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.
    Jung B; O'Carroll D; Sleep B
    Sci Total Environ; 2014 Oct; 496():155-164. PubMed ID: 25079234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pore-scale investigation of the effect of nanoparticle injection on properties of sandy porous media.
    Fopa RD; Bianco C; Archilha NL; Moreira AC; Pak T
    J Contam Hydrol; 2023 Feb; 253():104126. PubMed ID: 36731292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum.
    Vecchia ED; Luna M; Sethi R
    Environ Sci Technol; 2009 Dec; 43(23):8942-7. PubMed ID: 19943670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of nZVI stability on mobility in porous media.
    Kocur CM; O'Carroll DM; Sleep BE
    J Contam Hydrol; 2013 Feb; 145():17-25. PubMed ID: 23261906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.
    Basnet M; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of nanoscale zero-valent iron on hydraulic conductivity of a residual clayey soil and modeling of the filtration parameter.
    Reginatto C; Cecchin I; Salvagni Heineck K; Thomé A; Reddy KR
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9288-9296. PubMed ID: 31916159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shift in Natural Groundwater Bacterial Community Structure Due to Zero-Valent Iron Nanoparticles (nZVI).
    Crampon M; Joulian C; Ollivier P; Charron M; Hellal J
    Front Microbiol; 2019; 10():533. PubMed ID: 30949146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.