These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28823079)

  • 1. Mechanobiological model of arterial growth and remodeling.
    Keshavarzian M; Meyer CA; Hayenga HN
    Biomech Model Mechanobiol; 2018 Feb; 17(1):87-101. PubMed ID: 28823079
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Keshavarzian M; Meyer CA; Hayenga HN
    Tissue Eng Part C Methods; 2019 Nov; 25(11):641-654. PubMed ID: 31392930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new finite-element shell model for arterial growth and remodeling after stent implantation.
    Laubrie JD; Mousavi JS; Avril S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3282. PubMed ID: 31773919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
    Zahedmanesh H; Van Oosterwyck H; Lally C
    Comput Methods Biomech Biomed Engin; 2014; 17(8):813-28. PubMed ID: 22967148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Tissue Damage and Hemodynamics on Restenosis Following Percutaneous Transluminal Angioplasty: A Patient-Specific Multiscale Model.
    Corti A; Marradi M; Çelikbudak Orhon C; Boccafoschi F; Büchler P; Rodriguez Matas JF; Chiastra C
    Ann Biomed Eng; 2024 Aug; 52(8):2203-2220. PubMed ID: 38702558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering.
    Zahedmanesh H; Lally C
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):363-77. PubMed ID: 21626394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing.
    Lee JJ; Talman L; Peirce SM; Holmes JW
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1297-1309. PubMed ID: 30968216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid discrete-continuum multiscale model of tissue growth and remodeling.
    Gacek E; Mahutga RR; Barocas VH
    Acta Biomater; 2023 Jun; 163():7-24. PubMed ID: 36155097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction.
    Rouillard AD; Holmes JW
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):235-43. PubMed ID: 25009995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully coupled framework for in silico investigation of in-stent restenosis.
    Li S; Lei L; Hu Y; Zhang Y; Zhao S; Zhang J
    Comput Methods Biomech Biomed Engin; 2019 Feb; 22(2):217-228. PubMed ID: 30596516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro.
    Edgar LT; Maas SA; Guilkey JE; Weiss JA
    Biomech Model Mechanobiol; 2015 Aug; 14(4):767-82. PubMed ID: 25429840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational framework for modeling cell-matrix interactions in soft biological tissues.
    Eichinger JF; Grill MJ; Kermani ID; Aydin RC; Wall WA; Humphrey JD; Cyron CJ
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1851-1870. PubMed ID: 34173132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.
    Hayenga HN; Thorne BC; Peirce SM; Humphrey JD
    Ann Biomed Eng; 2011 Nov; 39(11):2669-82. PubMed ID: 21809144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel chemo-mechano-biological model of arterial tissue growth and remodelling.
    Aparício P; Thompson MS; Watton PN
    J Biomech; 2016 Aug; 49(12):2321-30. PubMed ID: 27184922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.