These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28823146)

  • 1. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.
    Kalb DM; Fencl FA; Woods TA; Swanson A; Maestas GC; Juárez JJ; Edwards BS; Shreve AP; Graves SW
    Anal Chem; 2017 Sep; 89(18):9967-9975. PubMed ID: 28823146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
    Austin Suthanthiraraj PP; Piyasena ME; Woods TA; Naivar MA; Lόpez GP; Graves SW
    Methods; 2012 Jul; 57(3):259-71. PubMed ID: 22465280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multinode acoustic focusing for parallel flow cytometry.
    Piyasena ME; Austin Suthanthiraraj PP; Applegate RW; Goumas AM; Woods TA; López GP; Graves SW
    Anal Chem; 2012 Feb; 84(4):1831-9. PubMed ID: 22239072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of melanoma cells in vitro using an optical detector of photoacoustic waves.
    Gutierrez-Juarez G; Gupta SK; Al-Shaer M; Polo-Parada L; Dale PS; Papageorgio C; Viator JA
    Lasers Surg Med; 2010 Mar; 42(3):274-81. PubMed ID: 20333746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow Cytometry Analysis to Identify Human CD8
    Flynn J; Gorry P
    Methods Mol Biol; 2019; 2048():1-13. PubMed ID: 31396924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidics.
    Austin Suthanthiraraj PP; Graves SW
    Curr Protoc Cytom; 2013 Jul; Chapter 1():1.2.1-1.2.14. PubMed ID: 23835801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.
    Chen Y; Nawaz AA; Zhao Y; Huang PH; McCoy JP; Levine SJ; Wang L; Huang TJ
    Lab Chip; 2014 Mar; 14(5):916-23. PubMed ID: 24406848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open flow cytometer with the combination of 3D hydrodynamic single cell focusing and confocal laser-induced fluorescence detection.
    Wu C; Wei X; Men X; Xu Y; Bai J; Wang Y; Zhou L; Yu YL; Xu ZR; Chen ML; Wang JH
    Talanta; 2023 Jun; 258():124424. PubMed ID: 36905790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile flow cytometer for mHealth.
    Balsam J; Bruck HA; Rasooly A
    Methods Mol Biol; 2015; 1256():139-53. PubMed ID: 25626537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamentals of Acoustic Cytometry.
    Ward MD; Kaduchak G
    Curr Protoc Cytom; 2018 Apr; 84(1):e36. PubMed ID: 30040220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flow cytometer for the measurement of Raman spectra.
    Watson DA; Brown LO; Gaskill DF; Naivar M; Graves SW; Doorn SK; Nolan JP
    Cytometry A; 2008 Feb; 73(2):119-28. PubMed ID: 18189283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells.
    Lee SK; Kim GS; Wu Y; Kim DJ; Lu Y; Kwak M; Han L; Hyung JH; Seol JK; Sander C; Gonzalez A; Li J; Fan R
    Nano Lett; 2012 Jun; 12(6):2697-704. PubMed ID: 22646476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing.
    Li Z; Li P; Xu J; Shao W; Yang C; Cui Y
    Biomed Microdevices; 2020 Mar; 22(2):27. PubMed ID: 32222836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.
    Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y
    Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.