BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28823408)

  • 1. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
    Li Z; Ma W; Yin Z; Guo H
    ISA Trans; 2017 Nov; 71(Pt 2):458-466. PubMed ID: 28823408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.
    Zhang D; Ren Y; Gui K; Jia J; Xu W
    Front Neurosci; 2017; 11():725. PubMed ID: 29311798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance.
    Huang TH; Zhang S; Yu S; MacLean MK; Zhu J; Lallo AD; Jiao C; Bulea TC; Zheng M; Su H
    IEEE Trans Robot; 2022 Jun; 38(3):1442-1459. PubMed ID: 36338603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification.
    Zhang L; Zhang X; Zhu X; Wang R; Gutierrez-Farewik EM
    Front Neurosci; 2023; 17():1254088. PubMed ID: 37712095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired design of a self-aligning, lightweight, and highly-compliant cable-driven knee exoskeleton.
    Yu S; Huang TH; Di Lallo A; Zhang S; Wang T; Fu Q; Su H
    Front Hum Neurosci; 2022; 16():1018160. PubMed ID: 36419645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
    Sarkisian SV; Gabert L; Lenzi T
    Wearable Technol; 2023; 4():e25. PubMed ID: 38510590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and Simulation of a Human Knee Exoskeleton's Assistive Strategies and Interaction.
    Zhang L; Liu Y; Wang R; Smith C; Gutierrez-Farewik EM
    Front Neurorobot; 2021; 15():620928. PubMed ID: 33762922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.
    Hwang B; Jeon D
    Sensors (Basel); 2015 Apr; 15(4):8337-57. PubMed ID: 25860074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.