These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28823408)

  • 21. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton.
    VĂ©lez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of a Passive Knee Exoskeleton for Vertical Jump Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2859-2868. PubMed ID: 33226951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton.
    Long Y; Du Z; Cong L; Wang W; Zhang Z; Dong W
    ISA Trans; 2017 Mar; 67():389-397. PubMed ID: 28108003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and Control of an Adaptive Knee Joint Exoskeleton Mechanism with Buffering Function.
    Wang Y; Zhang W; Shi D; Geng Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Neuromuscular-Model Based Control Strategy to Minimize Muscle Effort in Assistive Exoskeletons.
    Mghames S; Santina CD; Garabini M; Bicchi A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():963-970. PubMed ID: 31374754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton.
    Gui K; Liu H; Zhang D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assist-as-Needed Controller to a Task-based Knee Rehabilitation Exoskeleton.
    Adhikari V; MajidRad A; Yihun Y; Desai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3212-3215. PubMed ID: 30441075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients.
    Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X
    Front Robot AI; 2022; 9():864684. PubMed ID: 35585837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait.
    Singh R; Chaudhary H; Singh AK
    Disabil Rehabil Assist Technol; 2019 Jul; 14(5):462-470. PubMed ID: 30044676
    [No Abstract]   [Full Text] [Related]  

  • 32. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Switching Assistance for Exoskeletons During Cyclic Motions.
    Tagliamonte NL; Valentini S; Sudano A; Portaccio I; De Leonardis C; Formica D; Accoto D
    Front Neurorobot; 2019; 13():41. PubMed ID: 31275130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic and dynamic analysis of an anatomically based knee joint.
    Lee KM; Guo J
    J Biomech; 2010 May; 43(7):1231-6. PubMed ID: 20189182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and characterization of a torque-controllable actuator for knee assistance during sit-to-stand.
    Shepherd MK; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2228-2231. PubMed ID: 28324960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Passive Series Stiffness That Optimizes Torque Tracking for a Lower-Limb Exoskeleton in Human Walking.
    Zhang J; Collins SH
    Front Neurorobot; 2017; 11():68. PubMed ID: 29326580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton.
    Jebri A; Madani T; Djouani K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel approach to quantify the assistive torque profiles generated by passive back-support exoskeletons.
    Madinei S; Kim S; Park JH; Srinivasan D; Nussbaum MA
    J Biomech; 2022 Dec; 145():111363. PubMed ID: 36332510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.