These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28823975)

  • 21. Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.
    Josse F; Bender F; Cernose RW
    Anal Chem; 2001 Dec; 73(24):5937-44. PubMed ID: 11791563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible SAW Microfluidic Devices as Wearable pH Sensors Based on ZnO Nanoparticles.
    Piro L; Lamanna L; Guido F; Balena A; Mariello M; Rizzi F; De Vittorio M
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.
    Mujahid A; Dickert FL
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Love-mode surface acoustic wave devices based on multilayers of TeO
    Luo JT; Quan AJ; Liang GX; Zheng ZH; Ramadan S; Fu C; Li HL; Fu YQ
    Ultrasonics; 2017 Mar; 75():63-70. PubMed ID: 27930917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Love Wave Sensor with High Penetration Depth for Potential Application in Cell Monitoring.
    Segura Chávez PA; Bonhomme J; Bellaredj MLF; Olive L; Beyssen D; Oudich M; Charette PG; Sarry F
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SU-8 Guiding Layer for Love Wave Devices.
    Roach P; Atherton S; Doy N; McHale G; Newton MI
    Sensors (Basel); 2007 Nov; 7(11):2539-2547. PubMed ID: 28903244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Room-Temperature Ammonia Sensor Based on ZnO Nanorods Deposited on ST-Cut Quartz Surface Acoustic Wave Devices.
    Li W; Guo Y; Tang Y; Zu X; Ma J; Wang L; Fu YQ
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28513538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip.
    Länge K; Blaess G; Voigt A; Götzen R; Rapp M
    Biosens Bioelectron; 2006 Aug; 22(2):227-32. PubMed ID: 16458497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor.
    Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F
    Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications.
    Riaud A; Baudoin M; Thomas JL; Bou Matar O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1601-1607. PubMed ID: 28873055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mode Analysis of Pt/LGS Surface Acoustic Wave Devices.
    Xu H; Jin H; Dong S; Song X; Chen J; Xuan W; Huang S; Shi L; Luo J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covalent bound sensing layers on surface acoustic wave (SAW) biosensors.
    Barié N; Rapp M
    Biosens Bioelectron; 2001 Dec; 16(9-12):979-87. PubMed ID: 11679278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Performance of ZnO/SiO
    Su R; Fu S; Shen J; Chen Z; Lu Z; Yang M; Wang R; Zeng F; Wang W; Song C; Pan F
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42378-42385. PubMed ID: 32830495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.
    Caliendo C; Hamidullah M
    Biosensors (Basel); 2016 Dec; 6(4):. PubMed ID: 27918419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.
    Ash BJ; Worsfold SR; Vukusic P; Nash GR
    Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergence of dip-pen nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem.
    Mitsakakis K; Sekula-Neuner S; Lenhert S; Fuchs H; Gizeli E
    Analyst; 2012 Jul; 137(13):3076-82. PubMed ID: 22627738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pivotal role of electrospun nanofibers in microfluidic diagnostic systems - a review.
    Rezaei Z; Mahmoudifard M
    J Mater Chem B; 2019 Jul; 7(30):4602-4619. PubMed ID: 31364667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface acoustic wave microfluidics.
    Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ
    Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.