These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2882407)

  • 1. Reduction of a disulfide bond by beta-adrenergic agonists: evidence in support of a general "reductive activation" hypothesis for the mechanism of action of adrenergic agents.
    Peterson DA; Gerrard JM
    Med Hypotheses; 1987 Jan; 22(1):45-9. PubMed ID: 2882407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostaglandins as reducing agents: a model of adenylate cyclase activation?
    Peterson DA; Kelly B; Mehta N; Gerrard JM
    Prostaglandins; 1988 Nov; 36(5):667-71. PubMed ID: 2853423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of a metal or disulfide bond associated with the receptor: a general hypothesis for the mechanism of action of adrenergic agents.
    Peterson DA; Gerrard JM
    Med Hypotheses; 1987 Jan; 22(1):35-44. PubMed ID: 2882406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A redox cycling model for the action of beta-adrenoceptor agonists.
    Kühl PW
    Experientia; 1985 Sep; 41(9):1118-22. PubMed ID: 2864281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationships of beta-adrenergic receptor-coupled adenylate cyclase: implications of a redox mechanism for the action of agonists at beta-adrenergic receptors.
    Wong A; Hwang SM; Cheng HY; Crooke ST
    Mol Pharmacol; 1987 Apr; 31(4):368-76. PubMed ID: 2883567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.
    Ugur O; Onaran HO
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agonist-induced modulation of inverse agonist efficacy at the beta 2-adrenergic receptor.
    Chidiac P; Nouet S; Bouvier M
    Mol Pharmacol; 1996 Sep; 50(3):662-9. PubMed ID: 8794908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular disulfide-reducing capacity: an integrated measure of cell redox capacity.
    May JM; Qu ZC; Nelson DJ
    Biochem Biophys Res Commun; 2006 Jun; 344(4):1352-9. PubMed ID: 16650819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of full and partial beta-adrenergic agonists and antagonists on human lung adenylate cyclase.
    Delhaye M; Taton G; Camus JC; Chatelain P; Robberecht P; Waelbroeck M; Christophe J
    Biochem Pharmacol; 1983 Jun; 32(12):1831-5. PubMed ID: 6136280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exfoliation of the beta-adrenergic receptor and the regulatory components of adenylate cyclase by cultured rat glioma C6 cells.
    Kassis S; Lauter CJ; Stojanov M; Salem N
    Biochim Biophys Acta; 1986 May; 886(3):474-82. PubMed ID: 2871868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving concepts of partial agonism. The beta-adrenergic receptor as a paradigm.
    Jasper JR; Insel PA
    Biochem Pharmacol; 1992 Jan; 43(2):119-30. PubMed ID: 1346741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of agonists and antagonists with beta-adrenergic receptors.
    Molinoff PB; Weiland GA; Heidenreich KA; Pittman RN; Minneman KP
    Adv Cyclic Nucleotide Res; 1981; 14():51-67. PubMed ID: 6116391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agonist-independent alteration in beta-adrenoceptor-G-protein-adenylate cyclase system in an equine model of recurrent airway obstruction.
    Abraham G; Kottke C; Dhein S; Ungemach FR
    Pulm Pharmacol Ther; 2006; 19(3):218-29. PubMed ID: 16084121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular mechanisms of regulatory action of adrenergic receptor agonists on functional activity of adenylyl cyclase signaling system of the ciliates Dileptus anser and Tetrahymena pyriformis].
    Shpakov AO; Derkach KV; Uspenskaia ZI; Shpakova EA; Kuznetsova LA; Plesneva SA; Pertseva MN
    Tsitologiia; 2004; 46(4):317-25. PubMed ID: 15346790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effects of adrenergic agonists and alpha-, beta 1-, beta 2-antagonists on the intraocular pressure and adenylate cyclase activity in the ciliary processes of the rabbit.
    Palkama A; Uusitalo H; Raij K; Uusitalo R
    Acta Ophthalmol (Copenh); 1985 Feb; 63(1):9-15. PubMed ID: 2859730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of the combined contributions of agonist binding frequency and intrinsic efficiency to receptor-mediated activation of adenylate cyclase.
    Stickle D; Barber R
    Mol Pharmacol; 1991 Aug; 40(2):276-88. PubMed ID: 1678853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of receptor-mediated activation of GTP-binding protein/adenylate cyclase using the encounter coupling model.
    Stickle D; Barber R
    Mol Pharmacol; 1993 Mar; 43(3):397-411. PubMed ID: 8095693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of alpha and beta adrenergic agonists and antagonists, on rat liver plasma membrane bound adenylate cyclase.
    Doval MT; Bécemberg IL; Alfonzo M; de Venanzi F
    Acta Cient Venez; 1979; 30(5):494-501. PubMed ID: 44629
    [No Abstract]   [Full Text] [Related]  

  • 19. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations.
    Seifert R; Wenzel-Seifert K; Gether U; Kobilka BK
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1218-26. PubMed ID: 11356949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist-induced increase in apparent beta-adrenergic receptor size.
    Limbird LE; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):228-32. PubMed ID: 24213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.