These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 28824107)
1. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting. Koike M; Greer P; Owen K; Lilly G; Murr LE; Gaytan SM; Martinez E; Okabe T Materials (Basel); 2011 Oct; 4(10):1776-1792. PubMed ID: 28824107 [TBL] [Abstract][Full Text] [Related]
2. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Zhao B; Wang H; Qiao N; Wang C; Hu M Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):832-841. PubMed ID: 27770961 [TBL] [Abstract][Full Text] [Related]
3. [Comparison of surface characteristics and cytocompatibility of Ti-6Al-4V alloy fabricated with select laser melting and electron beam melting]. Zhao BJ; Wang H; Yan RZ; Wang C; Li RX; Hu M Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Dec; 51(12):753-757. PubMed ID: 27978917 [No Abstract] [Full Text] [Related]
4. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid. Gai X; Bai Y; Li S; Hou W; Hao Y; Zhang X; Yang R; Misra RDK Acta Biomater; 2020 Apr; 106():387-395. PubMed ID: 32058079 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties and in vitro cytocompatibility of dense and porous Ti-6Al-4V ELI manufactured by selective laser melting technology for biomedical applications. Suresh S; Sun CN; Tekumalla S; Rosa V; Ling Nai SM; Wong RCW J Mech Behav Biomed Mater; 2021 Nov; 123():104712. PubMed ID: 34365098 [TBL] [Abstract][Full Text] [Related]
7. Grindability of cast Ti-6Al-4V alloyed with copper. Watanabe I; Aoki T; Okabe T J Prosthodont; 2009 Feb; 18(2):152-5. PubMed ID: 19141053 [TBL] [Abstract][Full Text] [Related]
9. Fatigue testing of electron beam-melted Ti-6Al-4V ELI alloy for dental implants. Joshi GV; Duan Y; Neidigh J; Koike M; Chahine G; Kovacevic R; Okabe T; Griggs JA J Biomed Mater Res B Appl Biomater; 2013 Jan; 101(1):124-30. PubMed ID: 23077086 [TBL] [Abstract][Full Text] [Related]
10. Mechanical Properties of Selective Laser Sintering Pure Titanium and Ti-6Al-4V, and Its Anisotropy. Harada Y; Ishida Y; Miura D; Watanabe S; Aoki H; Miyasaka T; Shinya A Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33187166 [TBL] [Abstract][Full Text] [Related]
11. Over-refractory casting technique as an alternative to one-piece multi-unit fixed partial denture frameworks. de Oliveira Correa G; Henriques GE; Mesquita MF; Sobrinho LC J Prosthet Dent; 2006 Mar; 95(3):243-8. PubMed ID: 16543023 [TBL] [Abstract][Full Text] [Related]
12. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu. Koike M; Cai Z; Oda Y; Hattori M; Fujii H; Okabe T J Biomed Mater Res B Appl Biomater; 2005 May; 73(2):368-74. PubMed ID: 15744719 [TBL] [Abstract][Full Text] [Related]
13. Effect of surface reaction layer on grindability of cast titanium alloys. Ohkubo C; Hosoi T; Ford JP; Watanabe I Dent Mater; 2006 Mar; 22(3):268-74. PubMed ID: 16083955 [TBL] [Abstract][Full Text] [Related]
14. Grindability of cast Ti-Cu alloys. Kikuchi M; Takada Y; Kiyosue S; Yoda M; Woldu M; Cai Z; Okuno O; Okabe T Dent Mater; 2003 Jul; 19(5):375-81. PubMed ID: 12742432 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties of cast Ti-6Al-4V-XCu alloys. Aoki T; Okafor IC; Watanabe I; Hattori M; Oda Y; Okabe T J Oral Rehabil; 2004 Nov; 31(11):1109-14. PubMed ID: 15525390 [TBL] [Abstract][Full Text] [Related]
16. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining. Contreras EF; Henriques GE; Giolo SR; Nobilo MA J Prosthet Dent; 2002 Nov; 88(5):467-72. PubMed ID: 12473994 [TBL] [Abstract][Full Text] [Related]
17. Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen. Neikter M; Colliander M; de Andrade Schwerz C; Hansson T; Åkerfeldt P; Pederson R; Antti ML Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178389 [TBL] [Abstract][Full Text] [Related]
18. [Evaluation of biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting]. Wang H; Zhao BJ; Yan RZ; Wang C; Luo CC; Hu M Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):667-672. PubMed ID: 27806759 [No Abstract] [Full Text] [Related]
19. Surface properties and cytocompatibility of Ti-6Al-4V fabricated using Laser Engineered Net Shaping. A R; Mitun D; Balla VK; Dwaipayan S; D D; Manivasagam G Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():104-116. PubMed ID: 30948044 [TBL] [Abstract][Full Text] [Related]
20. Mechanical properties and microstructures of cast Ti-Cu alloys. Kikuchi M; Takada Y; Kiyosue S; Yoda M; Woldu M; Cai Z; Okuno O; Okabe T Dent Mater; 2003 May; 19(3):174-81. PubMed ID: 12628428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]