These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28824111)

  • 1. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors.
    Bergman DL; Pereg-Barnea T
    Materials (Basel); 2011 Oct; 4(10):1835-1845. PubMed ID: 28824111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity.
    Kowalski N; Dash SS; Sémon P; Sénéchal D; Tremblay AM
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34593641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified picture of the oxygen isotope effect in cuprate superconductors.
    Chen XJ; Struzhkin VV; Wu Z; Lin HQ; Hemley RJ; Mao HK
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3732-5. PubMed ID: 17360421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of superconductivity in the Hubbard model by buckling and breathing phonons.
    Macridin A; Moritz B; Jarrell M; Maier T
    J Phys Condens Matter; 2012 Nov; 24(47):475603. PubMed ID: 23110956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evidence of fluctuating stripes in the normal state of high-
    Huang EW; Mendl CB; Liu S; Johnston S; Jiang HC; Moritz B; Devereaux TP
    Science; 2017 Dec; 358(6367):1161-1164. PubMed ID: 29191902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the upper critical field in cuprate superconductors.
    Grissonnanche G; Cyr-Choinière O; Laliberté F; René de Cotret S; Juneau-Fecteau A; Dufour-Beauséjour S; Delage MÈ; LeBoeuf D; Chang J; Ramshaw BJ; Bonn DA; Hardy WN; Liang R; Adachi S; Hussey NE; Vignolle B; Proust C; Sutherland M; Krämer S; Park JH; Graf D; Doiron-Leyraud N; Taillefer L
    Nat Commun; 2014; 5():3280. PubMed ID: 24518054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital currents in extended Hubbard models of high-Tc cuprate superconductors.
    Weber C; Läuchli A; Mila F; Giamarchi T
    Phys Rev Lett; 2009 Jan; 102(1):017005. PubMed ID: 19257231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surprises in the t-J Model: Implications for Cuprates.
    Mallik AV; Gupta GK; Shenoy VB; Krishnamurthy HR
    Phys Rev Lett; 2020 Apr; 124(14):147002. PubMed ID: 32338957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.
    Putzke C; Malone L; Badoux S; Vignolle B; Vignolles D; Tabis W; Walmsley P; Bird M; Hussey NE; Proust C; Carrington A
    Sci Adv; 2016 Mar; 2(3):e1501657. PubMed ID: 27034989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain induced superconductivity in the parent compound BaFe2As2.
    Engelmann J; Grinenko V; Chekhonin P; Skrotzki W; Efremov DV; Oswald S; Iida K; Hühne R; Hänisch J; Hoffmann M; Kurth F; Schultz L; Holzapfel B
    Nat Commun; 2013; 4():2877. PubMed ID: 24309386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of cuprate superconductors in a four-bandd-pmodel: role of orbital degrees of freedom.
    Watanabe H; Shirakawa T; Seki K; Sakakibara H; Kotani T; Ikeda H; Yunoki S
    J Phys Condens Matter; 2023 Mar; 35(19):. PubMed ID: 36866651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically Thin Superconductors.
    Li Z; Sang L; Liu P; Yue Z; Fuhrer MS; Xue Q; Wang X
    Small; 2021 Mar; 17(9):e1904788. PubMed ID: 32363776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disorder raises the critical temperature of a cuprate superconductor.
    Leroux M; Mishra V; Ruff JPC; Claus H; Smylie MP; Opagiste C; Rodière P; Kayani A; Gu GD; Tranquada JM; Kwok WK; Islam Z; Welp U
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10691-10697. PubMed ID: 31085657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor.
    Sakakibara H; Usui H; Kuroki K; Arita R; Aoki H
    Phys Rev Lett; 2010 Jul; 105(5):057003. PubMed ID: 20867949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apical Charge Flux-Modulated In-Plane Transport Properties of Cuprate Superconductors.
    Kim S; Chen X; Fitzhugh W; Li X
    Phys Rev Lett; 2018 Oct; 121(15):157001. PubMed ID: 30362810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic energy driven pairing in cuprate superconductors.
    Maier TA; Jarrell M; Macridin A; Slezak C
    Phys Rev Lett; 2004 Jan; 92(2):027005. PubMed ID: 14753963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform mixing of high-Tc superconductivity and antiferromagnetism on a single CuO2 plane of a Hg-based five-layered cuprate.
    Mukuda H; Abe M; Araki Y; Kitaoka Y; Tokiwa K; Watanabe T; Iyo A; Kito H; Tanaka Y
    Phys Rev Lett; 2006 Mar; 96(8):087001. PubMed ID: 16606215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous Dome-like Superconductivity in RE
    Chen X; Guo J; Gong C; Cheng E; Le C; Liu N; Ying T; Zhang Q; Hu J; Li S; Chen X
    iScience; 2019 Apr; 14():171-179. PubMed ID: 30978668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paramagnons and high-temperature superconductivity in a model family of cuprates.
    Wang L; He G; Yang Z; Garcia-Fernandez M; Nag A; Zhou K; Minola M; Tacon ML; Keimer B; Peng Y; Li Y
    Nat Commun; 2022 Jun; 13(1):3163. PubMed ID: 35672416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Visualization of Ambipolar Mott Transition in Cuprate CuO_{2} Planes.
    Zhong Y; Fan JQ; Wang RF; Wang S; Zhang X; Zhu Y; Dou Z; Yu XQ; Wang Y; Zhang D; Zhu J; Song CL; Ma XC; Xue QK
    Phys Rev Lett; 2020 Aug; 125(7):077002. PubMed ID: 32857570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.