These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28824324)

  • 1. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.
    Huang G; Liu G; Zhang F; Gao J; Wang J; Chen Q; Wu B; Ding Z; Cai T
    Int J Med Sci; 2017; 14(9):871-879. PubMed ID: 28824324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of optimized tissue engineering bone implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits.
    Zhu C; Lin J; Jiang H; Gao J; Gao M; Wu B; Lin W; Huang G; Ding Z
    Cell Tissue Res; 2021 Sep; 385(3):639-658. PubMed ID: 33966092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model.
    Li D; Deng L; Yang Z; Xie X; Kang P; Tan Z
    J Biomater Appl; 2016 Apr; 30(9):1322-33. PubMed ID: 26801475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on local implantation of simvastatin for repairing rabbit radial critical size defects].
    Zhu J; Song Q; Wang J; Han X; Yang Y; Liao J; Song C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Apr; 24(4):465-71. PubMed ID: 20459013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects.
    Li JJ; Dunstan CR; Entezari A; Li Q; Steck R; Saifzadeh S; Sadeghpour A; Field JR; Akey A; Vielreicher M; Friedrich O; Roohani-Esfahani SI; Zreiqat H
    Adv Healthc Mater; 2019 Apr; 8(8):e1801298. PubMed ID: 30773833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair.
    Li D; Deng L; Xie X; Yang Z; Kang P
    J Mater Sci Mater Med; 2016 Jun; 27(6):101. PubMed ID: 27091043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Repair of segmental bone defects in rabbits' radius with domestic porous tantalum encapsulated with pedicled fascial flap].
    Wang H; Wang Q; Zhang H; Shi W; Lai Z; Cui Y; Li Q; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Oct; 31(10):1200-1207. PubMed ID: 29806321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo.
    Guda T; Walker JA; Singleton B; Hernandez J; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomater Appl; 2014 Mar; 28(7):1016-27. PubMed ID: 23771772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Spinal fusion of lumbar intertransverse process by using tissue engineered bone with xenogeneic deproteinized cancellous bone as scaffold].
    Gao C; Li Q; Jian Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):115-9. PubMed ID: 17357455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model.
    Kang SH; Chung YG; Oh IH; Kim YS; Min KO; Chung JY
    Cell Tissue Res; 2014 Jan; 355(1):81-8. PubMed ID: 24169864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold.
    Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR
    Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen-extracted xenogeneic cancellous bone graft with recombinant human bone morphogenetic protein-2 enhances bone regeneration in repair of mandibular defect in rabbits.
    Li ZJ; Lu CT; Feng ZQ; Zhao QT; Zhou ZY; Lai RF
    Kaohsiung J Med Sci; 2015 Jan; 31(1):18-25. PubMed ID: 25600916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration of hydroxyapatite/alumina bilayered scaffold with 3 mm passage-like medullary canal in canine tibia model.
    Kim JM; Son JS; Kang SS; Kim G; Choi SH
    Biomed Res Int; 2015; 2015():235108. PubMed ID: 25688353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone regeneration of tibial segmental defect using isotropic-pore structures hydroxyapatite/alumina bi-layered scaffold: in vivo pilot study.
    Han M; Kim JM; Choi SH; Lee FY; Son JS; Oh D
    J Long Term Eff Med Implants; 2011; 21(2):159-67. PubMed ID: 22043974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced repair of segmental bone defects in rabbit radius by porous tantalum scaffolds modified with the RGD peptide.
    Wang H; Li Q; Wang Q; Zhang H; Shi W; Gan H; Song H; Wang Z
    J Mater Sci Mater Med; 2017 Mar; 28(3):50. PubMed ID: 28197822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Direct bone morphogenetic protein 2 gene therapy for repairing segmental radial defect in rabbits].
    Li J; Bai L; Sun H; Han D; Gu J; Wang H; Duan J; Xu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Sep; 19(9):725-8. PubMed ID: 16206762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Vancomycin cationic liposome combined with nano-hydroxyapatite/chitosan/konjac glucomannan scaffold for treatment of infected bone defects in rabbits].
    Huang J; Ma T; Tang H; Fan X; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Feb; 26(2):190-5. PubMed ID: 22403883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.