These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 28824409)
1. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals. Hu J Front Comput Neurosci; 2017; 11():72. PubMed ID: 28824409 [No Abstract] [Full Text] [Related]
2. Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Hu J; Min J Cogn Neurodyn; 2018 Aug; 12(4):431-440. PubMed ID: 30137879 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel. Hu J Comput Math Methods Med; 2017; 2017():5109530. PubMed ID: 28255330 [TBL] [Abstract][Full Text] [Related]
4. [Automatic Epileptic Electroencephalogram Detection during Normal,Interictal and Ictal Periods Combining Feature Extraction Based on Sample Entropy and Wavelet Packet Energy with Real AdaBoost Algorithm]. Zhang J; Jiang W; Ben X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1031-8. PubMed ID: 29714964 [TBL] [Abstract][Full Text] [Related]
5. Research on Recognition Method of Driving Fatigue State Based on Sample Entropy and Kernel Principal Component Analysis. Ye B; Qiu T; Bai X; Liu P Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265790 [TBL] [Abstract][Full Text] [Related]
6. Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification. Li F; Fan Y; Zhang X; Wang C; Hu F; Jia W; Hui H J Med Syst; 2019 Dec; 44(2):39. PubMed ID: 31865469 [TBL] [Abstract][Full Text] [Related]
7. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network. Wang F; Chen D; Yao W; Fu R J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152 [TBL] [Abstract][Full Text] [Related]
8. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. Min J; Wang P; Hu J PLoS One; 2017; 12(12):e0188756. PubMed ID: 29220351 [TBL] [Abstract][Full Text] [Related]
9. Constructing Multi-scale Entropy Based on the Empirical Mode Decomposition(EMD) and its Application in Recognizing Driving Fatigue. Zou S; Qiu T; Huang P; Bai X; Liu C J Neurosci Methods; 2020 Jul; 341():108691. PubMed ID: 32464125 [TBL] [Abstract][Full Text] [Related]
10. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology. Arif S; Munawar S; Ali H Front Physiol; 2023; 14():1153268. PubMed ID: 37064914 [No Abstract] [Full Text] [Related]
11. Automatic Recognition of High-Density Epileptic EEG Using Support Vector Machine and Gradient-Boosting Decision Tree. He J; Yang L; Liu D; Song Z Brain Sci; 2022 Sep; 12(9):. PubMed ID: 36138933 [TBL] [Abstract][Full Text] [Related]
12. A boosted cascade for efficient epileptic seizure detection. Ge T; Qi Y; Wang Y; Chen W; Zheng X Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6309-12. PubMed ID: 24111183 [TBL] [Abstract][Full Text] [Related]
13. Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System. Chai R; Naik GR; Nguyen TN; Ling SH; Tran Y; Craig A; Nguyen HT IEEE J Biomed Health Inform; 2017 May; 21(3):715-724. PubMed ID: 26915141 [TBL] [Abstract][Full Text] [Related]
14. Assembling A Multi-Feature EEG Classifier for Left-Right Motor Imagery Data Using Wavelet-Based Fuzzy Approximate Entropy for Improved Accuracy. Hsu WY Int J Neural Syst; 2015 Dec; 25(8):1550037. PubMed ID: 26584583 [TBL] [Abstract][Full Text] [Related]
15. Advanced framework for epilepsy detection through image-based EEG signal analysis. Krishnan PT; Erramchetty SK; Balusa BC Front Hum Neurosci; 2024; 18():1336157. PubMed ID: 38317649 [TBL] [Abstract][Full Text] [Related]
16. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Acharya UR; Sree SV; Alvin AP; Yanti R; Suri JS Int J Neural Syst; 2012 Apr; 22(2):1250002. PubMed ID: 23627588 [TBL] [Abstract][Full Text] [Related]
17. ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods. Li C; Fu Y; Ouyang R; Liu Y; Hou X Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080966 [TBL] [Abstract][Full Text] [Related]
18. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection. Bogaarts JG; Gommer ED; Hilkman DM; van Kranen-Mastenbroek VH; Reulen JP Med Biol Eng Comput; 2016 Aug; 54(8):1285-93. PubMed ID: 27032931 [TBL] [Abstract][Full Text] [Related]
19. Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory. Srinivasan S; Johnson SD Cogn Neurodyn; 2024 Apr; 18(2):431-446. PubMed ID: 38699607 [TBL] [Abstract][Full Text] [Related]
20. Alcoholic EEG signal classification with Correlation Dimension based distance metrics approach and Modified Adaboost classification. Prabhakar SK; Rajaguru H Heliyon; 2020 Dec; 6(12):e05689. PubMed ID: 33364482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]