These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28825173)
1. Can red-emitting state be responsible for fluorescence quenching in LHCII aggregates? Gelzinis A; Chmeliov J; Ruban AV; Valkunas L Photosynth Res; 2018 Mar; 135(1-3):275-284. PubMed ID: 28825173 [TBL] [Abstract][Full Text] [Related]
2. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Ostroumov EE; Götze JP; Reus M; Lambrev PH; Holzwarth AR Photosynth Res; 2020 May; 144(2):171-193. PubMed ID: 32307623 [TBL] [Abstract][Full Text] [Related]
3. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). Johnson MP; Ruban AV J Biol Chem; 2009 Aug; 284(35):23592-601. PubMed ID: 19567871 [TBL] [Abstract][Full Text] [Related]
5. Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. Krüger TP; Ilioaia C; Johnson MP; Ruban AV; van Grondelle R Biochim Biophys Acta; 2014 Jul; 1837(7):1027-38. PubMed ID: 24560812 [TBL] [Abstract][Full Text] [Related]
6. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Townsend AJ; Saccon F; Giovagnetti V; Wilson S; Ungerer P; Ruban AV Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):666-675. PubMed ID: 29548769 [TBL] [Abstract][Full Text] [Related]
7. A possible molecular basis for photoprotection in the minor antenna proteins of plants. Fox KF; Ünlü C; Balevičius V; Ramdour BN; Kern C; Pan X; Li M; van Amerongen H; Duffy CDP Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):471-481. PubMed ID: 29625089 [TBL] [Abstract][Full Text] [Related]
8. Excitation migration, quenching, and regulation of photosynthetic light harvesting in photosystem II. Valkunas L; Chmeliov J; Trinkunas G; Duffy CD; van Grondelle R; Ruban AV J Phys Chem B; 2011 Jul; 115(29):9252-60. PubMed ID: 21675782 [TBL] [Abstract][Full Text] [Related]
9. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Adams PG; Vasilev C; Hunter CN; Johnson MP Biochim Biophys Acta Bioenerg; 2018 Oct; 1859(10):1075-1085. PubMed ID: 29928860 [TBL] [Abstract][Full Text] [Related]
10. The nature of self-regulation in photosynthetic light-harvesting antenna. Chmeliov J; Gelzinis A; Songaila E; Augulis R; Duffy CD; Ruban AV; Valkunas L Nat Plants; 2016 Apr; 2(5):16045. PubMed ID: 27243647 [TBL] [Abstract][Full Text] [Related]
11. Aggregation-related quenching of LHCII fluorescence in liposomes revealed by single-molecule spectroscopy. Tutkus M; Chmeliov J; Trinkunas G; Akhtar P; Lambrev PH; Valkunas L J Photochem Photobiol B; 2021 May; 218():112174. PubMed ID: 33799009 [TBL] [Abstract][Full Text] [Related]
12. Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. Horton P; Wentworth M; Ruban A FEBS Lett; 2005 Aug; 579(20):4201-6. PubMed ID: 16051219 [TBL] [Abstract][Full Text] [Related]
13. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Belgio E; Duffy CD; Ruban AV Phys Chem Chem Phys; 2013 Aug; 15(29):12253-61. PubMed ID: 23771239 [TBL] [Abstract][Full Text] [Related]
14. A Hidden State in Light-Harvesting Complex II Revealed By Multipulse Spectroscopy. van Oort B; van Grondelle R; van Stokkum IH J Phys Chem B; 2015 Apr; 119(16):5184-93. PubMed ID: 25815531 [TBL] [Abstract][Full Text] [Related]
15. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. Ware MA; Giovagnetti V; Belgio E; Ruban AV J Photochem Photobiol B; 2015 Nov; 152(Pt B):301-7. PubMed ID: 26233261 [TBL] [Abstract][Full Text] [Related]
16. Different crystal morphologies lead to slightly different conformations of light-harvesting complex II as monitored by variations of the intrinsic fluorescence lifetime. van Oort B; Maréchal A; Ruban AV; Robert B; Pascal AA; de Ruijter NC; van Grondelle R; van Amerongen H Phys Chem Chem Phys; 2011 Jul; 13(27):12614-22. PubMed ID: 21670839 [TBL] [Abstract][Full Text] [Related]
17. Excitation migration in fluctuating light-harvesting antenna systems. Chmeliov J; Trinkunas G; van Amerongen H; Valkunas L Photosynth Res; 2016 Jan; 127(1):49-60. PubMed ID: 25605669 [TBL] [Abstract][Full Text] [Related]
18. Two lutein molecules in LHCII have different conformations and functions: Insights into the molecular mechanism of thermal dissipation in plants. Yan H; Zhang P; Wang C; Liu Z; Chang W Biochem Biophys Res Commun; 2007 Apr; 355(2):457-63. PubMed ID: 17303080 [TBL] [Abstract][Full Text] [Related]
19. Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Crepin A; Cunill-Semanat E; Kuthanová Trsková E; Belgio E; Kaňa R Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804002 [TBL] [Abstract][Full Text] [Related]
20. Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment. Son M; Pinnola A; Schlau-Cohen GS Biochim Biophys Acta Bioenerg; 2020 Jun; 1861(5-6):148115. PubMed ID: 32204904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]