BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28825295)

  • 1. Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall.
    Fu Q; Medina L; Li Y; Carosio F; Hajian A; Berglund LA
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36154-36163. PubMed ID: 28825295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a Phytic Acid-Silica System in Wood for Highly Efficient Flame Retardancy and Smoke Suppression.
    Chen Z; Zhang S; Ding M; Wang M; Xu X
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.
    Carosio F; Kochumalayil J; Cuttica F; Camino G; Berglund L
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5847-56. PubMed ID: 25723913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Flame-Retardant and Smoke-Suppression Properties of Mg-Al-Layered Double-Hydroxide Nanostructures on Wood Substrate.
    Guo B; Liu Y; Zhang Q; Wang F; Wang Q; Liu Y; Li J; Yu H
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23039-23047. PubMed ID: 28635272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame Retardant Properties of a Guanidine Phosphate-Zinc Borate Composite Flame Retardant on Wood.
    Wang L; Yang Y; Deng H; Duan W; Zhu J; Wei Y; Li W
    ACS Omega; 2021 Apr; 6(16):11015-11024. PubMed ID: 34056255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Ammonium Polyphosphate and Organic Modified Montmorillonite on Flame Retardancy of Polyethylene Glycol/Wood-Flour-Based Phase Change Composites.
    Wang K; Liu C; Xie W; Ke Y; You X; Jing B; Shi Y
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combustion Behavior and Thermal Degradation Properties of Wood Impregnated with Intumescent Biomass Flame Retardants: Phytic Acid, Hydrolyzed Collagen, and Glycerol.
    Li L; Chen Z; Lu J; Wei M; Huang Y; Jiang P
    ACS Omega; 2021 Feb; 6(5):3921-3930. PubMed ID: 33585771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions.
    Liu A; Walther A; Ikkala O; Belova L; Berglund LA
    Biomacromolecules; 2011 Mar; 12(3):633-41. PubMed ID: 21291221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative Polyelectrolyte Treatment to Flame-Retard Wood.
    Soula M; Samyn F; Duquesne S; Landry V
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surface delignification on fire retardancy of wood treated with polyelectrolyte complexes.
    Soula M; Samyn F; Duquesne S; Landry V
    Holzforschung; 2024 Apr; 78(4):244-256. PubMed ID: 38605863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composites of nanofibrillated cellulose with clay minerals: A review.
    Alves L; Ferraz E; Gamelas JAF
    Adv Colloid Interface Sci; 2019 Oct; 272():101994. PubMed ID: 31394436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils.
    Liu A; Medina L; Berglund LA
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6453-6461. PubMed ID: 28155270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermally insulating vermiculite nanosheet-epoxy nanocomposite paint as a fire-resistant wood coating.
    Sethurajaperumal A; Manohar A; Banerjee A; Varrla E; Wang H; Ostrikov KK
    Nanoscale Adv; 2021 Jul; 3(14):4235-4243. PubMed ID: 36132838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (
    Lin CF; Karlsson O; Kim I; Myronycheva O; Mensah RA; Försth M; Das O; Mantanis GI; Jones D; Sandberg D
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coloration and Fire Retardancy of Transparent Wood Composites by Metal Ions.
    Samanta P; Samanta A; Maddalena L; Carosio F; Gao Y; Montanari C; Nero M; Willhammar T; Berglund LA; Li Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58850-58860. PubMed ID: 38055951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials.
    Ghanadpour M; Carosio F; Larsson PT; Wågberg L
    Biomacromolecules; 2015 Oct; 16(10):3399-410. PubMed ID: 26402379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO
    Xu W; Zhang B; Wang X; Wang G; Ding D
    J Hazard Mater; 2018 Feb; 343():364-375. PubMed ID: 29017120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood.
    Kačíková D; Kubovský I; Eštoková A; Kačík F; Kmeťová E; Kováč J; Ďurkovič J
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils.
    Ghanadpour M; Wicklein B; Carosio F; Wågberg L
    Nanoscale; 2018 Feb; 10(8):4085-4095. PubMed ID: 29431818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically porous SiO
    Li ME; Wang SX; Han LX; Yuan WJ; Cheng JB; Zhang AN; Zhao HB; Wang YZ
    J Hazard Mater; 2019 Aug; 375():61-69. PubMed ID: 31048136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.