BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28825366)

  • 1.
    Murphy MP; Quarto N; Longaker MT; Wan DC
    Tissue Eng Part C Methods; 2017 Dec; 23(12):971-981. PubMed ID: 28825366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of an athymic nude mouse model of nonhealing critical-sized calvarial defects.
    Gupta DM; Kwan MD; Slater BJ; Wan DC; Longaker MT
    J Craniofac Surg; 2008 Jan; 19(1):192-7. PubMed ID: 18216688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects.
    Levi B; Nelson ER; Li S; James AW; Hyun JS; Montoro DT; Lee M; Glotzbach JP; Commons GW; Longaker MT
    Stem Cells; 2011 Aug; 29(8):1241-55. PubMed ID: 21656608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of fresh bone marrow cells on reconstruction of mouse calvarial defect combined with calvarial osteoprogenitor cells and collagen-apatite scaffold.
    Yu X; Wang L; Peng F; Jiang X; Xia Z; Huang J; Rowe D; Wei M
    J Tissue Eng Regen Med; 2013 Dec; 7(12):974-83. PubMed ID: 22473786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults.
    Aalami OO; Nacamuli RP; Lenton KA; Cowan CM; Fang TD; Fong KD; Shi YY; Song HM; Sahar DE; Longaker MT
    Plast Reconstr Surg; 2004 Sep; 114(3):713-20. PubMed ID: 15318051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone.
    Tu Q; Valverde P; Li S; Zhang J; Yang P; Chen J
    Tissue Eng; 2007 Oct; 13(10):2431-40. PubMed ID: 17630878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model.
    Rhee SC; Ji YH; Gharibjanian NA; Dhong ES; Park SH; Yoon ES
    Stem Cells Dev; 2011 Feb; 20(2):233-42. PubMed ID: 20528145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits.
    Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J
    Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study.
    Semyari H; Rajipour M; Sabetkish S; Sabetkish N; Abbas FM; Kajbafzadeh AM
    Cell Tissue Bank; 2016 Mar; 17(1):69-83. PubMed ID: 26108195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study.
    Carvalho PP; Leonor IB; Smith BJ; Dias IR; Reis RL; Gimble JM; Gomes ME
    J Biomed Mater Res A; 2014 Sep; 102(9):3102-11. PubMed ID: 24123913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sutures Possess Strong Regenerative Capacity for Calvarial Bone Injury.
    Park S; Zhao H; Urata M; Chai Y
    Stem Cells Dev; 2016 Dec; 25(23):1801-1807. PubMed ID: 27762665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of calvarial bone healing with human bone marrow stromal cells versus inhibition with adipose-tissue stromal cells on nanostructured β-TCP-collagen.
    Bothe F; Lotz B; Seebach E; Fischer J; Hesse E; Diederichs S; Richter W
    Acta Biomater; 2018 Aug; 76():135-145. PubMed ID: 29933108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone regeneration mediated by BMP4-expressing muscle-derived stem cells is affected by delivery system.
    Usas A; Ho AM; Cooper GM; Olshanski A; Peng H; Huard J
    Tissue Eng Part A; 2009 Feb; 15(2):285-93. PubMed ID: 19061430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of tissue engineering based repair of calvarial defects using adipose stem cells from normal and osteoporotic rats.
    Pei M; Li J; McConda DB; Wen S; Clovis NB; Danley SS
    Bone; 2015 Sep; 78():1-10. PubMed ID: 25940459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marrow stromal cell-based cyclooxygenase 2 ex vivo gene-transfer strategy surprisingly lacks bone-regeneration effects and suppresses the bone-regeneration action of bone morphogenetic protein 4 in a mouse critical-sized calvarial defect model.
    Lau KH; Gysin R; Chen ST; Wergedal JE; Baylink DJ; Mohan S
    Calcif Tissue Int; 2009 Oct; 85(4):356-67. PubMed ID: 19763374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral blood-derived mesenchymal stem cells: candidate cells responsible for healing critical-sized calvarial bone defects.
    Li S; Huang KJ; Wu JC; Hu MS; Sanyal M; Hu M; Longaker MT; Lorenz HP
    Stem Cells Transl Med; 2015 Apr; 4(4):359-68. PubMed ID: 25742693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration in cranial defects previously treated with radiation.
    Nussenbaum B; Rutherford RB; Krebsbach PH
    Laryngoscope; 2005 Jul; 115(7):1170-7. PubMed ID: 15995502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SDF-1 enhances wound healing of critical-sized calvarial defects beyond self-repair capacity.
    Jin Q; Giannobile WV
    PLoS One; 2014; 9(5):e97035. PubMed ID: 24800841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of Vascularized Corticocancellous Bone and Diploic Space Using Muscle-Derived Stem Cells: A Translational Biologic Alternative for Healing Critical Bone Defects.
    Lough D; Swanson E; Sopko NA; Madsen C; Miller D; Wang H; Guo Q; Sursala SM; Kumar AR
    Plast Reconstr Surg; 2017 Apr; 139(4):893-905. PubMed ID: 28350668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Msx1
    Zhang X; Jiang W; Xie C; Wu X; Ren Q; Wang F; Shen X; Hong Y; Wu H; Liao Y; Zhang Y; Liang R; Sun W; Gu Y; Zhang T; Chen Y; Wei W; Zhang S; Zou W; Ouyang H
    Nat Commun; 2022 Sep; 13(1):5211. PubMed ID: 36064711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.