BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28825366)

  • 21. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model.
    Yoon E; Dhar S; Chun DE; Gharibjanian NA; Evans GR
    Tissue Eng; 2007 Mar; 13(3):619-27. PubMed ID: 17518608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model.
    Samsonraj RM; Dudakovic A; Zan P; Pichurin O; Cool SM; van Wijnen AJ
    Tissue Eng Part C Methods; 2017 Nov; 23(11):686-693. PubMed ID: 28537529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat.
    Mardas N; Kostopoulos L; Karring T
    J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects.
    Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S
    Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts.
    Levi B; James AW; Nelson ER; Li S; Peng M; Commons GW; Lee M; Wu B; Longaker MT
    Stem Cells Dev; 2011 Feb; 20(2):243-57. PubMed ID: 20698749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel animal model of calvarial defect in an infected unfavorable wound: reconstruction with rhBMP-2.
    DeCesare GE; Cooper GM; Smith DM; Cray JJ; Durham EL; Kinsella CR; Mooney MP; Losee JE
    Plast Reconstr Surg; 2011 Feb; 127(2):588-594. PubMed ID: 21285763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold.
    Petridis X; Diamanti E; Trigas GCh; Kalyvas D; Kitraki E
    J Craniomaxillofac Surg; 2015 May; 43(4):483-90. PubMed ID: 25753474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sema3A and HIF1α co-overexpressed iPSC-MSCs/HA scaffold facilitates the repair of calvarial defect in a mouse model.
    Li J; Wang T; Li C; Wang Z; Wang P; Zheng L
    J Cell Physiol; 2020 Oct; 235(10):6754-6766. PubMed ID: 32012286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xenotransplantation of interferon-gamma-pretreated clumps of a human mesenchymal stem cell/extracellular matrix complex induces mouse calvarial bone regeneration.
    Takeshita K; Motoike S; Kajiya M; Komatsu N; Takewaki M; Ouhara K; Iwata T; Takeda K; Mizuno N; Fujita T; Kurihara H
    Stem Cell Res Ther; 2017 Apr; 8(1):101. PubMed ID: 28446226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications.
    Florczyk SJ; Leung M; Li Z; Huang JI; Hopper RA; Zhang M
    J Biomed Mater Res A; 2013 Oct; 101(10):2974-83. PubMed ID: 23737120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs.
    Ye JH; Xu YJ; Gao J; Yan SG; Zhao J; Tu Q; Zhang J; Duan XJ; Sommer CA; Mostoslavsky G; Kaplan DL; Wu YN; Zhang CP; Wang L; Chen J
    Biomaterials; 2011 Aug; 32(22):5065-76. PubMed ID: 21492931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model.
    Han LH; Conrad B; Chung MT; Deveza L; Jiang X; Wang A; Butte MJ; Longaker MT; Wan D; Yang F
    J Biomed Mater Res A; 2016 Jun; 104(6):1321-31. PubMed ID: 26991141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice.
    Lee JY; Musgrave D; Pelinkovic D; Fukushima K; Cummins J; Usas A; Robbins P; Fu FH; Huard J
    J Bone Joint Surg Am; 2001 Jul; 83(7):1032-9. PubMed ID: 11451972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus.
    Lo SC; Li KC; Chang YH; Hsu MN; Sung LY; Vu TA; Hu YC
    Biomaterials; 2017 Apr; 124():1-11. PubMed ID: 28182872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesenchymal stem cells and three-dimensional-osteoconductive scaffold regenerate calvarial bone in critical size defects in swine.
    Johnson ZM; Yuan Y; Li X; Jashashvili T; Jamieson M; Urata M; Chen Y; Chai Y
    Stem Cells Transl Med; 2021 Aug; 10(8):1170-1183. PubMed ID: 33794062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low power laser irradiation and human adipose-derived stem cell treatments promote bone regeneration in critical-sized calvarial defects in rats.
    Wang YH; Wu JY; Kong SC; Chiang MH; Ho ML; Yeh ML; Chen CH
    PLoS One; 2018; 13(4):e0195337. PubMed ID: 29621288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies.
    Gomes PS; Fernandes MH
    Lab Anim; 2011 Jan; 45(1):14-24. PubMed ID: 21156759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds.
    Lappalainen OP; Karhula S; Haapea M; Kyllönen L; Haimi S; Miettinen S; Saarakkala S; Korpi J; Ylikontiola LP; Serlo WS; Sándor GK
    Childs Nerv Syst; 2016 Apr; 32(4):681-8. PubMed ID: 26782995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of mesenchymal stem cells with platelet rich plasma on the repair of critical calvarial defects in mice.
    Monteiro BS; Del Carlo RJ; Argôlo-Neto NM; Nardi NB; Carvalho PH; Bonfá Lde P; Chagastelles PC; Moreira HN; Viloria MI; Santos BS
    Acta Cir Bras; 2012 Mar; 27(3):201-9. PubMed ID: 22460249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects.
    Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS
    Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.