These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 28825595)
1. Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. Yuan H; Li N; Fu D; Ren J; Hui J; Peng J; Liu Y; Qiu T; Jiang M; Pan Q; Han Y; Wang X; Li Q; Qin J J Clin Invest; 2017 Sep; 127(9):3375-3391. PubMed ID: 28825595 [TBL] [Abstract][Full Text] [Related]
2. Setd2 deficiency impairs hematopoietic stem cell self-renewal and causes malignant transformation. Zhang YL; Sun JW; Xie YY; Zhou Y; Liu P; Song JC; Xu CH; Wang L; Liu D; Xu AN; Chen Z; Chen SJ; Sun XJ; Huang QH Cell Res; 2018 Apr; 28(4):476-490. PubMed ID: 29531312 [TBL] [Abstract][Full Text] [Related]
3. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Liu M; Rao H; Liu J; Li X; Feng W; Gui L; Tang H; Xu J; Gao WQ; Li L Redox Biol; 2021 Jul; 43():102004. PubMed ID: 34020310 [TBL] [Abstract][Full Text] [Related]
4. Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/β-catenin signaling. Jiang C; He C; Wu Z; Li F; Xiao J Biochem Biophys Res Commun; 2018 Jul; 502(3):382-388. PubMed ID: 29842882 [TBL] [Abstract][Full Text] [Related]
5. The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Grinat J; Heuberger J; Vidal RO; Goveas N; Kosel F; Berenguer-Llergo A; Kranz A; Wulf-Goldenberg A; Behrens D; Melcher B; Sauer S; Vieth M; Batlle E; Stewart AF; Birchmeier W Nat Commun; 2020 Dec; 11(1):6422. PubMed ID: 33349639 [TBL] [Abstract][Full Text] [Related]
6. TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis. Hua F; Shang S; Yang YW; Zhang HZ; Xu TL; Yu JJ; Zhou DD; Cui B; Li K; Lv XX; Zhang XW; Liu SS; Yu JM; Wang F; Zhang C; Huang B; Hu ZW Gastroenterology; 2019 Feb; 156(3):708-721.e15. PubMed ID: 30365932 [TBL] [Abstract][Full Text] [Related]
7. Setd2 deficiency promotes gastric tumorigenesis through inhibiting the SIRT1/FOXO pathway. Feng W; Ma C; Rao H; Zhang W; Liu C; Xu Y; Aji R; Wang Z; Xu J; Gao WQ; Li L Cancer Lett; 2023 Nov; 579():216470. PubMed ID: 37914019 [TBL] [Abstract][Full Text] [Related]
8. SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis. Xie Y; Sahin M; Wakamatsu T; Inoue-Yamauchi A; Zhao W; Han S; Nargund AM; Yang S; Lyu Y; Hsieh JJ; Leslie CS; Cheng EH JCI Insight; 2023 Feb; 8(4):. PubMed ID: 36810256 [TBL] [Abstract][Full Text] [Related]
9. SETD2-mediated epigenetic regulation of noncanonical Wnt5A during osteoclastogenesis. Deb M; Laha D; Maity J; Das H Clin Epigenetics; 2021 Oct; 13(1):192. PubMed ID: 34663428 [TBL] [Abstract][Full Text] [Related]
10. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Niu N; Lu P; Yang Y; He R; Zhang L; Shi J; Wu J; Yang M; Zhang ZG; Wang LW; Gao WQ; Habtezion A; Xiao GG; Sun Y; Li L; Xue J Gut; 2020 Apr; 69(4):715-726. PubMed ID: 31300513 [TBL] [Abstract][Full Text] [Related]
11. SETD2, an epigenetic tumor suppressor: a focused review on GI tumor. Hu M; Hu M; Zhang Q; Lai J; Liu X Front Biosci (Landmark Ed); 2020 Jan; 25(4):781-797. PubMed ID: 31585917 [TBL] [Abstract][Full Text] [Related]
12. SETD2 as a regulator of N6-methyladenosine RNA methylation and modifiers in cancer. Kumari S; Muthusamy S Eur J Cancer Prev; 2020 Nov; 29(6):556-564. PubMed ID: 33021769 [TBL] [Abstract][Full Text] [Related]
13. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Ma C; Liu M; Feng W; Rao H; Zhang W; Liu C; Xu Y; Wang Z; Teng Y; Yang X; Ni L; Xu J; Gao WQ; Lu B; Li L Clin Transl Med; 2023 Nov; 13(11):e1475. PubMed ID: 37962020 [TBL] [Abstract][Full Text] [Related]
14. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Xie Y; Sahin M; Sinha S; Wang Y; Nargund AM; Lyu Y; Han S; Dong Y; Hsieh JJ; Leslie CS; Cheng EH Nat Cancer; 2022 Feb; 3(2):188-202. PubMed ID: 35115713 [TBL] [Abstract][Full Text] [Related]
15. SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Yuan H; Han Y; Wang X; Li N; Liu Q; Yin Y; Wang H; Pan L; Li L; Song K; Qiu T; Pan Q; Chen Q; Zhang G; Zang Y; Tan M; Zhang J; Li Q; Wang X; Jiang J; Qin J Cancer Cell; 2020 Sep; 38(3):350-365.e7. PubMed ID: 32619406 [TBL] [Abstract][Full Text] [Related]
16. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Zhu K; Lei PJ; Ju LG; Wang X; Huang K; Yang B; Shao C; Zhu Y; Wei G; Fu XD; Li L; Wu M Nucleic Acids Res; 2017 Jan; 45(1):92-105. PubMed ID: 27614073 [TBL] [Abstract][Full Text] [Related]
18. H3K36 histone methyltransferase Setd2 is required for murine embryonic stem cell differentiation toward endoderm. Zhang Y; Xie S; Zhou Y; Xie Y; Liu P; Sun M; Xiao H; Jin Y; Sun X; Chen Z; Huang Q; Chen S Cell Rep; 2014 Sep; 8(6):1989-2002. PubMed ID: 25242323 [TBL] [Abstract][Full Text] [Related]
19. SMYD3 controls a Wnt-responsive epigenetic switch for ASCL2 activation and cancer stem cell maintenance. Wang T; Wu H; Liu S; Lei Z; Qin Z; Wen L; Liu K; Wang X; Guo Y; Liu Q; Liu L; Wang J; Lin L; Mao C; Zhu X; Xiao H; Bian X; Chen D; Xu C; Wang B Cancer Lett; 2018 Aug; 430():11-24. PubMed ID: 29746925 [TBL] [Abstract][Full Text] [Related]
20. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. de Almeida SF; Grosso AR; Koch F; Fenouil R; Carvalho S; Andrade J; Levezinho H; Gut M; Eick D; Gut I; Andrau JC; Ferrier P; Carmo-Fonseca M Nat Struct Mol Biol; 2011 Jul; 18(9):977-83. PubMed ID: 21792193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]