BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28825696)

  • 1. A simple method based on Sanger sequencing and MS Word wildcard searching to identify Cas9-induced frameshift mutations.
    Jie H; Li Z; Wang P; Zhao L; Zhang Q; Yao X; Song X; Zhao Y; Yao S
    Lab Invest; 2017 Dec; 97(12):1500-1507. PubMed ID: 28825696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish.
    Prykhozhij SV; Steele SL; Razaghi B; Berman JN
    Dis Model Mech; 2017 Jun; 10(6):811-822. PubMed ID: 28280001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 5. Using CRISPR/Cas9 Gene Editing to Investigate the Oncogenic Activity of Mutant Calreticulin in Cytokine Dependent Hematopoietic Cells.
    Abdelfattah NS; Mullally A
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish.
    Yu C; Zhang Y; Yao S; Wei Y
    PLoS One; 2014; 9(6):e98282. PubMed ID: 24901507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing.
    Iida M; Suzuki M; Sakane Y; Nishide H; Uchiyama I; Yamamoto T; Suzuki KT; Fujii S
    Genes Cells; 2020 Jul; 25(7):498-509. PubMed ID: 32323394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system.
    Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X
    Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Gene Reframing Therapy for Recessive Dystrophic Epidermolysis Bullosa with CRISPR/Cas9.
    Takashima S; Shinkuma S; Fujita Y; Nomura T; Ujiie H; Natsuga K; Iwata H; Nakamura H; Vorobyev A; Abe R; Shimizu H
    J Invest Dermatol; 2019 Aug; 139(8):1711-1721.e4. PubMed ID: 30831133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.
    Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Nogué F
    PLoS One; 2020; 15(8):e0235942. PubMed ID: 32804931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Endonuclease Cas9-Mediated Homology-Independent Integration for Generating Quality Control Materials for Clinical Molecular Genetic Testing.
    Lin G; Zhang K; Peng R; Han Y; Xie J; Li J
    J Mol Diagn; 2018 May; 20(3):373-380. PubMed ID: 29680088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Survey of Validation Strategies for CRISPR-Cas9 Editing.
    Sentmanat MF; Peters ST; Florian CP; Connelly JP; Pruett-Miller SM
    Sci Rep; 2018 Jan; 8(1):888. PubMed ID: 29343825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruptive non-disruptive applications of CRISPR/Cas9.
    Schmid-Burgk JL
    Curr Opin Biotechnol; 2017 Dec; 48():203-209. PubMed ID: 28633080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.