These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28825746)

  • 1. Microchip electrophoresis utilizing an in situ photopolymerized Phos-tag binding polyacrylamide gel for specific entrapment and analysis of phosphorylated compounds.
    Yamamoto S; Himeno M; Kobayashi M; Akamatsu M; Satoh R; Kinoshita M; Sugiura R; Suzuki S
    Analyst; 2017 Sep; 142(18):3416-3423. PubMed ID: 28825746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Pinpoint Photopolymerization of Phos-Tag Polyacrylamide Gel in Poly(dimethylsiloxane)/Glass Microchip for Specific Entrapment, Derivatization, and Separation of Phosphorylated Compounds.
    Yamamoto S; Yano S; Kinoshita M; Suzuki S
    Gels; 2021 Dec; 7(4):. PubMed ID: 34940328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous concentration enrichment and electrophoretic separation of weak acids on a microchip, using in situ photopolymerized carboxylate-type polyacrylamide gels as the permselective preconcentrator.
    Yamamoto S; Watanabe Y; Nishida N; Suzuki S
    J Sep Sci; 2011 Oct; 34(20):2879-84. PubMed ID: 21796791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microchip electrophoresis of oligosaccharides using lectin-immobilized preconcentrator gels fabricated by in situ photopolymerization.
    Yamamoto S; Suzuki S; Suzuki S
    Analyst; 2012 May; 137(9):2211-7. PubMed ID: 22433972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line microchip electrophoresis-mediated preconcentration of cationic compounds utilizing cationic polyacrylamide gels fabricated by in situ photopolymerization.
    Yamamoto S; Okada F; Kinoshita M; Suzuki S
    Analyst; 2018 Sep; 143(18):4429-4435. PubMed ID: 30151536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ fabrication of ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for capillary electrophoresis of anionic compounds.
    Yamamoto S; Hirakawa S; Suzuki S
    Anal Chem; 2008 Nov; 80(21):8224-30. PubMed ID: 18841941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in Phos-tag electrophoresis for the analysis of phosphoproteins in proteomics.
    Hirano H; Shirakawa J
    Expert Rev Proteomics; 2022 Feb; 19(2):103-114. PubMed ID: 35285370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Method for Detecting Phosphorylation of Proteins by Using Zn
    Kumar G
    Methods Mol Biol; 2018; 1853():223-229. PubMed ID: 30097947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Peroxisome Biogenesis by Phos-Tag SDS-PAGE.
    Okumoto K; Fujiki Y
    Methods Mol Biol; 2023; 2643():207-215. PubMed ID: 36952188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mn
    Markandran K; Xuan JVLE; Yu H; Shun LM; Ferenczi MA
    Curr Protoc; 2021 Aug; 1(8):e221. PubMed ID: 34411463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].
    Yamamoto S
    Yakugaku Zasshi; 2012; 132(9):1031-5. PubMed ID: 23023420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels.
    Hatch AV; Herr AE; Throckmorton DJ; Brennan JS; Singh AK
    Anal Chem; 2006 Jul; 78(14):4976-84. PubMed ID: 16841920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn(II)-Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large Phosphoprotein.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    Methods Mol Biol; 2017; 1599():113-126. PubMed ID: 28477115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic 2-D PAGE using multifunctional in situ polyacrylamide gels and discontinuous buffers.
    Yang S; Liu J; Lee CS; Devoe DL
    Lab Chip; 2009 Feb; 9(4):592-9. PubMed ID: 19190795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-affinity electrophoresis on a microchip for determination of protein kinase activity.
    Han A; Hosokawa K; Maeda M
    Electrophoresis; 2009 Oct; 30(20):3507-13. PubMed ID: 19784951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    Biochim Biophys Acta; 2015 Jun; 1854(6):601-8. PubMed ID: 25315852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phos-tag diagonal electrophoresis precisely detects the mobility change of phosphoproteins in Phos-tag SDS-PAGE.
    Okawara Y; Hirano H; Kimura A; Sato N; Hayashi Y; Osada M; Kawakami T; Ootake N; Kinoshita E; Fujita K
    J Proteomics; 2021 Jan; 231():104005. PubMed ID: 33035715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. History of Phos-tag technology for phosphoproteomics.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    J Proteomics; 2022 Feb; 252():104432. PubMed ID: 34818585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and identification of four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity electrophoresis.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Electrophoresis; 2012 Mar; 33(5):849-55. PubMed ID: 22522539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific glutamic acid residues in targeted proteins induce exaggerated retardations in Phos-tag SDS-PAGE migration.
    Kinoshita E; Kinoshita-Kikuta E; Karata K; Kawano T; Nishiyama A; Yamato M; Koike T
    Electrophoresis; 2017 Apr; 38(8):1139-1146. PubMed ID: 28112428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.