These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28825760)

  • 1. Copper-coordination polymer-controlled Cu@N-rGO and CuO@C nanoparticle formation: reusable green catalyst for A
    Vinod Kumar V; Rajmohan R; Vairaprakash P; Mariappan M; Anthony SP
    Dalton Trans; 2017 Sep; 46(35):11704-11714. PubMed ID: 28825760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper Nanoparticles in Click Chemistry.
    Alonso F; Moglie Y; Radivoy G
    Acc Chem Res; 2015 Sep; 48(9):2516-28. PubMed ID: 26332570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of copper nanoparticles and ions on spermatozoa motility of sea trout (Salmo trutta m. Trutta L.).
    Kowalska-Góralska M; Dziewulska K; Kulasza M
    Aquat Toxicol; 2019 Jun; 211():11-17. PubMed ID: 30908993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycinemax cv. Kowsar).
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Sci Total Environ; 2020 May; 715():136994. PubMed ID: 32041054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse Cu/Cu
    Yang K; Yan Y; Wang H; Sun Z; Chen W; Kang H; Han Y; Zahng W; Sun X; Li Z
    Nanoscale; 2018 Sep; 10(37):17647-17655. PubMed ID: 30204213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzoic Acid Interactions Affect Aquatic Properties and Toxicity of Copper Oxide Nanoparticles.
    Wang Z; Fang H; Wang S
    Bull Environ Contam Toxicol; 2016 Aug; 97(2):159-65. PubMed ID: 27098254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers.
    Kothapalli CR; Ramamurthi A
    Acta Biomater; 2009 Feb; 5(2):541-53. PubMed ID: 18849207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.
    Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H
    Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane.
    Farooq U; Danish M; Lu S; Brusseau ML; Naqvi M; Fu X; Zhang X; Sui Q; Qiu Z
    Appl Catal A Gen; 2017 Aug; 544():10-20. PubMed ID: 29353964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria.
    Zhang H; Shi J; Su Y; Li W; Wilkinson KJ; Xie B
    Environ Monit Assess; 2020 Jul; 192(8):484. PubMed ID: 32617676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green Synthesis of Cu Nanoparticles in Modulating the Reactivity of Amine-Functionalized Composite Materials towards Cross-Coupling Reactions.
    Rana S; Varadwaj GBB; Jonnalagadda SB
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.
    Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal susceptibility of Candida species to copper oxide nanoparticles on polycaprolactone fibers (PCL-CuONPs).
    Muñoz-Escobar A; Reyes-López SY
    PLoS One; 2020; 15(2):e0228864. PubMed ID: 32092072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root System Architecture, Copper Uptake and Tissue Distribution in Soybean (
    Yusefi-Tanha E; Fallah S; Rostamnejadi A; Pokhrel LR
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33050103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial activity and dielectric properties of the PVA/cellulose nanocrystal composite using the synergistic effect of rGO@CuNPs.
    Tohamy HS; Elnasharty MMM; Abdel-Aziz MS; El-Sakhawy M; Turky G; Kamel S
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129801. PubMed ID: 38309410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafine copper nanoparticles anchored on reduced graphene oxide present excellent catalytic performance toward 4-nitrophenol reduction.
    Kang X; Teng D; Wu S; Tian Z; Liu J; Li P; Ma Y; Liang C
    J Colloid Interface Sci; 2020 Apr; 566():265-270. PubMed ID: 32007738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible Copper Oxide Nanoparticle Composites from Cellulose and Chitosan: Facile Synthesis, Unique Structure, and Antimicrobial Activity.
    Tran CD; Makuvaza J; Munson E; Bennett B
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42503-42515. PubMed ID: 29152974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance.
    Zhao X; Tan Y; Wu F; Niu H; Tang Z; Cai Y; Giesy JP
    Sci Total Environ; 2016 Nov; 571():380-7. PubMed ID: 27450957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Toxic Effects of Cu and CuO Nanoparticles on Euplotes aediculatus.
    Zhao X; Fan X; Gong Z; Gao X; Wang Y; Ni B
    Microb Ecol; 2023 Feb; 85(2):544-556. PubMed ID: 35316342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.