These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28825996)

  • 1. Identification, size classification and evolution of Laves phase precipitates in high chromium, fully ferritic steels.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2017 Oct; 101():221-231. PubMed ID: 28825996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2018 May; 108():11-18. PubMed ID: 29544163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-Scaling of Thermomechanically Induced Laves Phase Precipitation in High Performance Ferritic (HiperFer) Stainless Steels.
    Pöpperlová J; Fan X; Kuhn B; Krupp U
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first step towards computational design of W-containing self-healing ferritic creep resistant steels.
    Yu H; Xu W; van der Zwaag S
    Sci Technol Adv Mater; 2020 Sep; 21(1):641-652. PubMed ID: 33061837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Crack Obstruction Mechanisms in Crofer
    Fischer T; Kuhn B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.
    Song G; Sun Z; Li L; Xu X; Rawlings M; Liebscher CH; Clausen B; Poplawsky J; Leonard DN; Huang S; Teng Z; Liu CT; Asta MD; Gao Y; Dunand DC; Ghosh G; Chen M; Fine ME; Liaw PK
    Sci Rep; 2015 Nov; 5():16327. PubMed ID: 26548303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laves Phase in a 12% Cr Martensitic/Ferritic Steel: Evolution and Characterization of Nanoparticles at 650 °C.
    Sanhueza JP; Rojas D; Prat O; Garcia J; Melendrez M
    J Nanosci Nanotechnol; 2019 May; 19(5):2971-2976. PubMed ID: 30501807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalog of NIMS creep data sheets.
    Sawada K; Kimura K; Abe F; Taniuchi Y; Sekido K; Nojima T; Ohba T; Kushima H; Miyazaki H; Hongo H; Watanabe T
    Sci Technol Adv Mater; 2019; 20(1):1131-1149. PubMed ID: 32082436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Laves phase in Crofer 22 H stainless steel.
    Hsiao ZW; Kuhn B; Chen D; Singheiser L; Kuo JC; Lin DY
    Micron; 2015 Jul; 74():59-64. PubMed ID: 25974858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions.
    Taneike M; Abe F; Sawada K
    Nature; 2003 Jul; 424(6946):294-6. PubMed ID: 12867976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation of W-Rich Laves Phase Nanoparticles in Tempered Martensite Ferritic Steel During Long-Term Aging at Elevated Temperature.
    Kim C
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4489-4493. PubMed ID: 31968503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior Creep Resistance and Remnant Strength of Novel Tempered Ferritic-Martensitic Steels Designed by Element Addition.
    Wang H; Li K; Chen W; Han L; Feng Y
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Holding Time on Dissimilar Transient Liquid-Phase-Bonded Properties of Super-Ferritic Stainless Steel 446 to Martensitic Stainless Steel 410 Using a Nickel-Based Interlayer.
    Hafizi M; Kasiri-Asgarani M; Naalchian M; Bakhsheshi-Rad HR; Berto F
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants.
    Abe F
    Sci Technol Adv Mater; 2008 Jan; 9(1):013002. PubMed ID: 27877920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosized-Precipitate Behavior of Ferritic 11Cr Heat-Resistance Steel Subjected to High Temperature Creep Damage.
    Kim C
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2421-2425. PubMed ID: 30487013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Long-Term Thermal Aging on Microstructure Evolution and Creep Deformation Behavior of a Novel 11Cr-3W-3Co Martensite Ferritic Steel.
    Zhao H; Han X; Wang M; Wang Z
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laves Phase Evolution in China Low-Activation Martensitic (CLAM) Steel during Long-Term Aging at 550 °C.
    Yang L; Zhao F; Ding W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Laves Precipitation in a FeCrAl-based Alloy Through Severe Thermomechanical Processing.
    Zheng J; Jia Y; Du P; Wang H; Pan Q; Zhang Y; Liu C; Zhang R; Qiu S
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.
    Hsiao ZW; Chen D; Kuo JC; Lin DY
    J Microsc; 2017 Apr; 266(1):35-47. PubMed ID: 28066885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.