These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28826033)

  • 1. Stomatal development: focusing on the grasses.
    Hepworth C; Caine RS; Harrison EL; Sloan J; Gray JE
    Curr Opin Plant Biol; 2018 Feb; 41():1-7. PubMed ID: 28826033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplicated antagonistic EPF peptides optimize grass stomatal initiation.
    Jangra R; Brunetti SC; Wang X; Kaushik P; Gulick PJ; Foroud NA; Wang S; Lee JS
    Development; 2021 Aug; 148(16):. PubMed ID: 34328169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
    Raissig MT; Abrash E; Bettadapur A; Vogel JP; Bergmann DC
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8326-31. PubMed ID: 27382177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple transcriptional factors control stomata development in rice.
    Wu Z; Chen L; Yu Q; Zhou W; Gou X; Li J; Hou S
    New Phytol; 2019 Jul; 223(1):220-232. PubMed ID: 30825332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root hair development involves asymmetric cell division in Brachypodium distachyon and symmetric division in Oryza sativa.
    Kim CM; Dolan L
    New Phytol; 2011 Nov; 192(3):601-10. PubMed ID: 21848982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning.
    Rudall PJ; Knowles EV
    Ann Bot; 2013 Oct; 112(6):1031-43. PubMed ID: 23969762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms for Regulating Stomatal Formation across Diverse Plant Species.
    Zhou W; Liu J; Wang W; Li Y; Ma Z; He H; Wang X; Lian X; Dong X; Zhao X; Zhou Y
    Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light Regulation of Stomatal Development and Patterning: Shifting the Paradigm from
    Wei H; Kong D; Yang J; Wang H
    Plant Commun; 2020 Mar; 1(2):100030. PubMed ID: 33367232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon.
    Spiegelhalder RP; Berg LS; Nunes TDG; Dörr M; Jesenofsky B; Lindner H; Raissig MT
    Development; 2024 Oct; 151(20):. PubMed ID: 39166983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Form, development and function of grass stomata.
    Nunes TDG; Zhang D; Raissig MT
    Plant J; 2020 Feb; 101(4):780-799. PubMed ID: 31571301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary context of root epidermis cell patterning in grasses (Poaceae).
    Marzec M; Melzer M; Szarejko I
    Plant Signal Behav; 2014; 9(1):e27972. PubMed ID: 24521825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatal development in the grasses: lessons from models and crops (and crop models).
    McKown KH; Bergmann DC
    New Phytol; 2020 Sep; 227(6):1636-1648. PubMed ID: 31985072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous genes of epidermal patterning factor regulate stomatal development in rice.
    Lu J; He J; Zhou X; Zhong J; Li J; Liang YK
    J Plant Physiol; 2019; 234-235():18-27. PubMed ID: 30660943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brachypodium distachyon UNICULME4 and LAXATUM-A are redundantly required for development.
    Liu S; Magne K; Daniel S; Sibout R; Ratet P
    Plant Physiol; 2022 Jan; 188(1):363-381. PubMed ID: 34662405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields?
    Buckley CR; Caine RS; Gray JE
    Front Plant Sci; 2019; 10():1783. PubMed ID: 32117345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon.
    Nunes TDG; Berg LS; Slawinska MW; Zhang D; Redt L; Sibout R; Vogel JP; Laudencia-Chingcuanco D; Jesenofsky B; Lindner H; Raissig MT
    Curr Biol; 2023 May; 33(9):1844-1854.e6. PubMed ID: 37086717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsBC1L1 and OsBC1L8 function in stomatal development in rice.
    Li Z; Sun P; Sun P; Liang YK; Ge S
    Biochem Biophys Res Commun; 2021 Oct; 576():40-47. PubMed ID: 34478918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.
    Torii KU
    Trends Plant Sci; 2012 Dec; 17(12):711-9. PubMed ID: 22819466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.