BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2882618)

  • 1. Disorders in the system of cyclic nucleotides in atherosclerosis: cyclic AMP and cyclic GMP content and activity of related enzymes in human aorta.
    Tertov VV; Orekhov AN; Grigorian GYu ; Kurennaya GS; Kudryashov SA; Tkachuk VA; Smirnov VN
    Tissue Cell; 1987; 19(1):21-8. PubMed ID: 2882618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The content of cyclic nucleotides in an organ culture of normal and atherosclerosis-affected human aorta].
    Tertov VV; Tabagari SI; Orekhov AN
    Biull Eksp Biol Med; 1989 May; 107(5):575-7. PubMed ID: 2544234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP and cyclic GMP content in a short-term organ culture of normal and atherosclerotic human aorta.
    Tertov VV; Orekhov AN; Smirnov VN
    Artery; 1986; 13(6):373-82. PubMed ID: 3022690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of cyclic nucleotides in the pathogenesis of human atherosclerosis.
    Tertov VV; Orekhov AN; Smirnov VN
    Biomed Biochim Acta; 1987; 46(10):727-33. PubMed ID: 2451514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotides and atherosclerosis: studies in primary culture of human aortic cells.
    Tertov VV; Orekhov AN; Kudryashov SA; Klibanov AL; Ivanov NN; Torchilin VP; Smirnov VN
    Exp Mol Pathol; 1987 Dec; 47(3):377-89. PubMed ID: 2445600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta.
    Yu SM; Kuo SC
    Br J Pharmacol; 1995 Apr; 114(8):1587-94. PubMed ID: 7599926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic nucleotides and platelet aggregation. Effect of aggregating agents on the activity of cyclic nucleotide-metabolizing enzymes.
    Barber AJ
    Biochim Biophys Acta; 1976 Sep; 444(2):579-95. PubMed ID: 9149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells.
    Martin W; White DG; Henderson AH
    Br J Pharmacol; 1988 Jan; 93(1):229-39. PubMed ID: 2894877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on cyclic nucleotides in cancer. I. Adenylate guanylate cyclase and protein kinases in the prostatic sarcoma tissue.
    Shima S; Kawashima Y; Hirai M; Kouyama H
    Biochim Biophys Acta; 1976 Sep; 444(2):571-8. PubMed ID: 9148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ethanol on myocardial guanylate and adenylate cyclase activity and on cyclic GMP and AMP levels.
    Vesely DL; Lehotay DC; Levey GS
    J Stud Alcohol; 1978 May; 39(5):842-7. PubMed ID: 27667
    [No Abstract]   [Full Text] [Related]  

  • 11. Clofibrate does not alter cyclic nucleotide metabolism in muscle.
    Lehotay DC; Paul HS; Gindler JS; Adibi SA; Levey GS
    Metabolism; 1983 Feb; 32(2):157-9. PubMed ID: 6131374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual regulation of adenylate cyclase and guanylate cyclase: alpha 2-adrenergic signal transduction in adrenocortical carcinoma cells.
    Jaiswal N; Sharma RK
    Arch Biochem Biophys; 1986 Sep; 249(2):616-9. PubMed ID: 2875690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenylate cyclase, guanylate cyclase and cyclic nucleotide phosphodiesterases of guinea-pig cardiac sarcolemma.
    St Louis PJ; Sulakhe PV
    Biochem J; 1976 Sep; 158(3):535-41. PubMed ID: 10895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic GMP system in the epidermis.
    Adachi K; Aoyagi T; Iizuka H; Halprin KM; Levin V
    Curr Probl Dermatol; 1980; 10():39-65. PubMed ID: 6263550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-induced differentiation of morphine's effect on cyclic nucleotide metabolism.
    Hoskins B; Ho IK
    Neurobiol Aging; 1987; 8(5):473-6. PubMed ID: 2891056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased activity of guanylate cyclase in the atherosclerotic rabbit aorta: role of non-endothelial nitric oxide synthases.
    Rupin A; Behr D; Verbeuren TJ
    Br J Pharmacol; 1996 Nov; 119(6):1233-8. PubMed ID: 8937728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cyclic nucleotide metabolism during human monocyte differentiation.
    O'Dorisio MS; Fertel R; Finkler E; Brooks R; Vassalo L
    J Leukoc Biol; 1984 Jun; 35(6):617-30. PubMed ID: 6144716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and different activation of adenylate cyclase by NaF and of guanylate cyclase by NaN3 in neuronal and glial cells separated from rat cerebral cortex.
    Nanba T; Ando M; Nagata Y; Kitajima S; Nakazawa K
    Brain Res; 1981 Aug; 218(1-2):267-77. PubMed ID: 6115697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor.
    Yu SM; Cheng ZJ; Kuo SC
    Eur J Pharmacol; 1995 Jun; 280(1):69-77. PubMed ID: 7498256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity trends of adenylate and guanylate cyclases and cAMP and cGMP levels during the first embryonic stages of Bufo bufo.
    Farnesi RM; Secca T; Tei S; Vagnetti D; Santarella B; Roscani C
    Comp Biochem Physiol Comp Physiol; 1993 Jun; 105(2):319-22. PubMed ID: 8101159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.