BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 28826224)

  • 1. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review.
    Kerimi A; Williamson G
    Antioxid Redox Signal; 2018 Dec; 29(16):1633-1659. PubMed ID: 28826224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells.
    Prasain JK; Rajbhandari R; Keeton AB; Piazza GA; Barnes S
    Food Funct; 2016 Sep; 7(9):4012-4019. PubMed ID: 27711848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies to Target Glucose Metabolism in Tumor Microenvironment on Cancer by Flavonoids.
    Wang G; Wang JJ; Guan R; Du L; Gao J; Fu XL
    Nutr Cancer; 2017; 69(4):534-554. PubMed ID: 28323500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity.
    Brusselmans K; Vrolix R; Verhoeven G; Swinnen JV
    J Biol Chem; 2005 Feb; 280(7):5636-45. PubMed ID: 15533929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox properties of tea polyphenols and related biological activities.
    Sang S; Hou Z; Lambert JD; Yang CS
    Antioxid Redox Signal; 2005; 7(11-12):1704-14. PubMed ID: 16356131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms underlying the anticancer activities of licorice flavonoids.
    Zhang Z; Yang L; Hou J; Tian S; Liu Y
    J Ethnopharmacol; 2021 Mar; 267():113635. PubMed ID: 33246112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells.
    Landis-Piwowar KR; Milacic V; Dou QP
    J Cell Biochem; 2008 Oct; 105(2):514-23. PubMed ID: 18636546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle.
    Chen V; Staub RE; Baggett S; Chimmani R; Tagliaferri M; Cohen I; Shtivelman E
    PLoS One; 2012; 7(1):e30107. PubMed ID: 22272282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention.
    Ramos S
    J Nutr Biochem; 2007 Jul; 18(7):427-42. PubMed ID: 17321735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin in cancer prevention and therapy.
    Chirumbolo S
    Integr Cancer Ther; 2013 Mar; 12(2):97-102. PubMed ID: 22740081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders.
    Sayed AM; Hassanein EHM; Salem SH; Hussein OE; Mahmoud AM
    Life Sci; 2020 Oct; 259():118173. PubMed ID: 32750437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hallmarks of Flavonoids in Cancer.
    Ponte LGS; Pavan ICB; Mancini MCS; da Silva LGS; Morelli AP; Severino MB; Bezerra RMN; Simabuco FM
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33918290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells.
    Chen R; Hollborn M; Grosche A; Reichenbach A; Wiedemann P; Bringmann A; Kohen L
    Mol Vis; 2014; 20():242-58. PubMed ID: 24623967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties.
    Lotito SB; Zhang WJ; Yang CS; Crozier A; Frei B
    Free Radic Biol Med; 2011 Jul; 51(2):454-63. PubMed ID: 21571063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison.
    Chong SJF; Lai JXH; Eu JQ; Bellot GL; Pervaiz S
    Antioxid Redox Signal; 2018 Dec; 29(16):1553-1588. PubMed ID: 29186971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Hypoxia-inducible Factor-1α and Vascular Endothelial Growth Factor Signaling by Plant Flavonoids.
    Fernando W; Rupasinghe HP; Hoskin DW
    Mini Rev Med Chem; 2015; 15(6):479-89. PubMed ID: 25873069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling.
    Fraga CG; Oteiza PI
    Free Radic Biol Med; 2011 Aug; 51(4):813-23. PubMed ID: 21699974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro effects and the related molecular mechanism of galangin and quercetin on human gastric cancer cell line (SGC-7901).
    Xu YX; Wang B; Zhao XH
    Pak J Pharm Sci; 2017 Jul; 30(4):1279-1287. PubMed ID: 29039326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities.
    Weng CJ; Yen GC
    Cancer Metastasis Rev; 2012 Jun; 31(1-2):323-51. PubMed ID: 22314287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.