These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28826237)

  • 1. Nanocarrier based approaches for targeting breast cancer stem cells.
    Pindiprolu SKSS; Krishnamurthy PT; Chintamaneni PK; Karri VVSR
    Artif Cells Nanomed Biotechnol; 2018 Aug; 46(5):885-898. PubMed ID: 28826237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Therapeutics Against Breast Cancer Stem Cells by Targeting Surface Markers and Signaling Pathways.
    Das PK; Rakib MA; Khanam JA; Pillai S; Islam F
    Curr Stem Cell Res Ther; 2019; 14(8):669-682. PubMed ID: 31808385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment.
    Naz S; Shahzad H; Ali A; Zia M
    Artif Cells Nanomed Biotechnol; 2018 Aug; 46(5):899-916. PubMed ID: 28914553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting.
    Lv L; Shi Y; Wu J; Li G
    Int J Nanomedicine; 2021; 16():1487-1508. PubMed ID: 33654398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model.
    Al Faraj A; Shaik AS; Ratemi E; Halwani R
    J Control Release; 2016 Mar; 225():240-51. PubMed ID: 26827662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance.
    Palomeras S; Ruiz-Martínez S; Puig T
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the breast cancer stem cell phenotype by hypoxia-inducible factors.
    Semenza GL
    Clin Sci (Lond); 2015 Dec; 129(12):1037-45. PubMed ID: 26405042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery.
    Liu X; Wu L; Wang L; Jiang W
    Talanta; 2018 Mar; 179():356-363. PubMed ID: 29310244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological targets of breast cancer stem cells: a review.
    Pindiprolu SKSS; Krishnamurthy PT; Chintamaneni PK
    Naunyn Schmiedebergs Arch Pharmacol; 2018 May; 391(5):463-479. PubMed ID: 29476201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications.
    Zeng X; Liu C; Yao J; Wan H; Wan G; Li Y; Chen N
    Pharmacol Res; 2021 Jan; 163():105320. PubMed ID: 33271295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches.
    Malliappan SP; Kandasamy P; Chidambaram S; Venkatasubbu D; Perumal SK; Sugumaran A
    Anticancer Agents Med Chem; 2020; 20(11):1300-1310. PubMed ID: 31642415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bright Horizon of Intelligent Targeted-cancer Therapy: Nanoparticles Against Breast Cancer Stem Cells.
    Vaez A; Abbasi M; Shabani L; Azizipour E; Shafiee M; Zare MA; Rahbar O; Azari A; Amani AM; Golchin A
    Curr Stem Cell Res Ther; 2023; 18(6):787-799. PubMed ID: 36200213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast cancer stem cells: a novel therapeutic target.
    Gangopadhyay S; Nandy A; Hor P; Mukhopadhyay A
    Clin Breast Cancer; 2013 Feb; 13(1):7-15. PubMed ID: 23127340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective mode of action of plumbagin through BRCA1 deficient breast cancer stem cells.
    Somasundaram V; Hemalatha SK; Pal K; Sinha S; Nair AS; Mukhopadhyay D; Srinivas P
    BMC Cancer; 2016 May; 16():336. PubMed ID: 27229859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining duration of HER2-targeted therapy using stem cell extinction models.
    Riley L; Zhou H; Lange K; Sinsheimer JS; Sehl ME
    PLoS One; 2012; 7(12):e46613. PubMed ID: 23284608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer stem cells in solid and liquid tissues of breast cancer patients: characterization and therapeutic perspectives.
    Chiotaki R; Polioudaki H; Theodoropoulos PA
    Curr Cancer Drug Targets; 2015; 15(3):256-69. PubMed ID: 25669721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A recombinant protein TmSm(T34A) can inhibit proliferation and proapoptosis to breast cancer stem cells(BCSCs) by down-regulating the expression of Cyclin D1.
    Ma X; Zhang Y; Kang Y; Li L; Zheng W
    Biomed Pharmacother; 2016 Dec; 84():373-381. PubMed ID: 27668537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium.
    Feng ZM; Qiu J; Chen XW; Liao RX; Liao XY; Zhang LP; Chen X; Li Y; Chen ZT; Sun JG
    BMC Cancer; 2015 Sep; 15():645. PubMed ID: 26400441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells.
    He L; Yu A; Deng L; Zhang H
    Curr Pharm Des; 2020; 26(17):2009-2021. PubMed ID: 32183663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of breast cancer by dietary polyphenols-role of cancer stem cells.
    Gu HF; Mao XY; Du M
    Crit Rev Food Sci Nutr; 2020; 60(5):810-825. PubMed ID: 30632783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.