These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 28826654)

  • 1. An online adaptive screening procedure for selective neuronal responses.
    Knieling S; Niediek J; Kutter E; Bostroem J; Elger CE; Mormann F
    J Neurosci Methods; 2017 Nov; 291():36-42. PubMed ID: 28826654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo.
    Rutishauser U; Schuman EM; Mamelak AN
    J Neurosci Methods; 2006 Jun; 154(1-2):204-24. PubMed ID: 16488479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Unsupervised Online Spike-Sorting Framework.
    Knieling S; Sridharan KS; Belardinelli P; Naros G; Weiss D; Mormann F; Gharabaghi A
    Int J Neural Syst; 2016 Aug; 26(5):1550042. PubMed ID: 26711713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal synchrony in relation to burst discharge in epileptic human temporal lobes.
    Colder BW; Wilson CL; Frysinger RC; Chao LC; Harper RM; Engel J
    J Neurophysiol; 1996 Jun; 75(6):2496-508. PubMed ID: 8793759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike sorting with hidden Markov models.
    Herbst JA; Gammeter S; Ferrero D; Hahnloser RH
    J Neurosci Methods; 2008 Sep; 174(1):126-34. PubMed ID: 18619490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking recurrence of correlation structure in neuronal recordings.
    Neymotin SA; Talbot ZN; Jung JQ; Fenton AA; Lytton WW
    J Neurosci Methods; 2017 Jan; 275():1-9. PubMed ID: 27746231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-parametric directionality analysis - Extension for removal of a single common predictor and application to time series.
    Halliday DM; Senik MH; Stevenson CW; Mason R
    J Neurosci Methods; 2016 Aug; 268():87-97. PubMed ID: 27168497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over Hours.
    Niediek J; Boström J; Elger CE; Mormann F
    PLoS One; 2016; 11(12):e0166598. PubMed ID: 27930664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.
    Kaneko H; Tamura H; Tate S; Kawashima T; Suzuki SS; Fujita I
    Neural Netw; 2010 Aug; 23(6):733-42. PubMed ID: 20381310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the isolation quality of extracellularly recorded action potentials.
    Joshua M; Elias S; Levine O; Bergman H
    J Neurosci Methods; 2007 Jul; 163(2):267-82. PubMed ID: 17477972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms.
    Eggermont JJ
    J Neurophysiol; 2002 Jan; 87(1):305-21. PubMed ID: 11784752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of neuronal spikes using an adaptive threshold based on the max-min spread sorting method.
    Chan HL; Lin MA; Wu T; Lee ST; Tsai YT; Chao PK
    J Neurosci Methods; 2008 Jul; 172(1):112-21. PubMed ID: 18508127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the robustness of EC-PC spike detection method for online neural recording.
    Zhou Y; Wu T; Rastegarnia A; Guan C; Keefer E; Yang Z
    J Neurosci Methods; 2014 Sep; 235():316-30. PubMed ID: 25088692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison of extracellular spike sorting algorithms for single-channel recordings.
    Wild J; Prekopcsak Z; Sieger T; Novak D; Jech R
    J Neurosci Methods; 2012 Jan; 203(2):369-76. PubMed ID: 22037595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Single Neuron Unit Activity and Local Field Potential Oscillations in a Human Visual Recognition Memory Task.
    Kucewicz MT; Michael Berry B; Bower MR; Cimbalnik J; Svehlik V; Matt Stead S; Worrell GA
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):67-75. PubMed ID: 26151930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting neuronal activity changes using an interspike interval algorithm compared with using visual inspection.
    Liu Y; Denton JM; Frykberg BP; Nelson RJ
    J Neurosci Methods; 2006 Jul; 155(1):49-55. PubMed ID: 16466798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-population model for medial temporal lobe neurons: The vast majority are almost silent.
    Magyar A; Collins J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012712. PubMed ID: 26274208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.