These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 28826654)

  • 21. Extracellular spike detection from multiple electrode array using novel intelligent filter and ensemble fuzzy decision making.
    Azami H; Escudero J; Darzi A; Sanei S
    J Neurosci Methods; 2015 Jan; 239():129-38. PubMed ID: 25455341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Verification of multichannel electrode array integrity by use of cross-channel correlations.
    Swindale NV; Spacek MA
    J Neurosci Methods; 2016 Apr; 263():95-102. PubMed ID: 26875661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A real-time spike classification method based on dynamic time warping for extracellular enteric neural recording with large waveform variability.
    Cao Y; Rakhilin N; Gordon PH; Shen X; Kan EC
    J Neurosci Methods; 2016 Mar; 261():97-109. PubMed ID: 26719239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint decoding of visual stimuli by IT neurons' spike counts is not improved by simultaneous recording.
    Anderson B; Sanderson MI; Sheinberg DL
    Exp Brain Res; 2007 Jan; 176(1):1-11. PubMed ID: 16874519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tempotron: a neuron that learns spike timing-based decisions.
    Gütig R; Sompolinsky H
    Nat Neurosci; 2006 Mar; 9(3):420-8. PubMed ID: 16474393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ.
    Gnadt JW; Echols SD; Yildirim A; Zhang H; Paul K
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1129-35. PubMed ID: 14560765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals.
    Moran A; Bar-Gad I
    J Neurosci Methods; 2010 Jan; 186(1):116-29. PubMed ID: 19900473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study.
    Kamran MA; Hong KS
    J Neural Eng; 2013 Oct; 10(5):056002. PubMed ID: 23893789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NEV2lkit: a new open source tool for handling neuronal event files from multi-electrode recordings.
    Bongard M; Micol D; Fernández E
    Int J Neural Syst; 2014 Jun; 24(4):1450009. PubMed ID: 24694167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrative analysis platform for multiple neural spike train data.
    Huang Y; Li X; Li Y; Xu Q; Lu Q; Liu Q
    J Neurosci Methods; 2008 Jul; 172(2):303-11. PubMed ID: 18538855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.
    Alegre-Cortés J; Soto-Sánchez C; Pizá ÁG; Albarracín AL; Farfán FD; Felice CJ; Fernández E
    J Neurosci Methods; 2016 Jul; 267():35-44. PubMed ID: 27044801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using response models to estimate channel capacity for neuronal classification of stationary visual stimuli using temporal coding.
    Wiener MC; Richmond BJ
    J Neurophysiol; 1999 Dec; 82(6):2861-75. PubMed ID: 10601425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic detection of epileptiform spikes in the electrocorticogram: a comparison of two algorithms.
    Dümpelmann M; Elger CE
    Seizure; 1998 Apr; 7(2):145-52. PubMed ID: 9627206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting.
    Ponulak F; Kasiński A
    Neural Comput; 2010 Feb; 22(2):467-510. PubMed ID: 19842989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal spike train entropy estimation by history clustering.
    Watters N; Reeke GN
    Neural Comput; 2014 Sep; 26(9):1840-72. PubMed ID: 24922505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-trial learning of novel stimuli by individual neurons of the human hippocampus-amygdala complex.
    Rutishauser U; Mamelak AN; Schuman EM
    Neuron; 2006 Mar; 49(6):805-13. PubMed ID: 16543129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coding with noisy neurons: stability of tuning curve estimation strongly depends on the analysis method.
    Etzold A; Schwegler H; Eurich CW
    J Neurosci Methods; 2004 Apr; 134(2):109-19. PubMed ID: 15003377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computationally efficient method for incorporating spike waveform information into decoding algorithms.
    Ventura V; Todorova S
    Neural Comput; 2015 May; 27(5):1033-50. PubMed ID: 25774541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.