These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. Jha S; Topol EJ JAMA; 2016 Dec; 316(22):2353-2354. PubMed ID: 27898975 [No Abstract] [Full Text] [Related]
5. Machine learning and radiology. Wang S; Summers RM Med Image Anal; 2012 Jul; 16(5):933-51. PubMed ID: 22465077 [TBL] [Abstract][Full Text] [Related]
6. Computer technology in detection and staging of prostate carcinoma: a review. Zhu Y; Williams S; Zwiggelaar R Med Image Anal; 2006 Apr; 10(2):178-99. PubMed ID: 16150630 [TBL] [Abstract][Full Text] [Related]
7. Myths and facts about artificial intelligence: why machine- and deep-learning will not replace interventional radiologists. Pesapane F; Tantrige P; Patella F; Biondetti P; Nicosia L; Ianniello A; Rossi UG; Carrafiello G; Ierardi AM Med Oncol; 2020 Apr; 37(5):40. PubMed ID: 32246300 [TBL] [Abstract][Full Text] [Related]
8. New opportunities in computer-aided diagnosis: change detection and characterization. Khorasani R; Erickson BJ; Patriarche J J Am Coll Radiol; 2006 Jun; 3(6):468-9. PubMed ID: 17412102 [No Abstract] [Full Text] [Related]
9. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212 [TBL] [Abstract][Full Text] [Related]
10. [Non-linear registration of MR brain images integrated with machine learning]. Wu GR; Qi FH Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):268-70. PubMed ID: 17039935 [TBL] [Abstract][Full Text] [Related]
11. [A fast approach for level set segmentation]. Lin YZ; Cheng YB; Chen WF Nan Fang Yi Ke Da Xue Xue Bao; 2006 Jun; 26(6):764-6. PubMed ID: 16793595 [TBL] [Abstract][Full Text] [Related]
12. Sparse bayesian learning of filters for efficient image expansion. Kanemura A; Maeda S; Ishii S IEEE Trans Image Process; 2010 Jun; 19(6):1480-90. PubMed ID: 20215080 [TBL] [Abstract][Full Text] [Related]
13. Comparing mammographic images. Angelo MF; Patrocinio AC; Schiabel H; Medeiros RB; Pires SR IEEE Eng Med Biol Mag; 2008; 27(3):74-81. PubMed ID: 18519185 [No Abstract] [Full Text] [Related]
14. Assessement of rheumatic diseases with computational radiology: current status and future potential. Peloschek P; Boesen M; Donner R; Kubassova O; Birngruber E; Patsch J; Mayerhöfer M; Langs G Eur J Radiol; 2009 Aug; 71(2):211-6. PubMed ID: 19457632 [TBL] [Abstract][Full Text] [Related]
16. On distributional assumptions and whitened cosine similarities. Loog M IEEE Trans Pattern Anal Mach Intell; 2008 Jun; 30(6):1114-5. PubMed ID: 18421115 [TBL] [Abstract][Full Text] [Related]
17. Region of interest and multiresolution for volume rendering. Piccand S; Noumeir R; Paquette E IEEE Trans Inf Technol Biomed; 2008 Sep; 12(5):561-8. PubMed ID: 18779070 [TBL] [Abstract][Full Text] [Related]
18. Sparse label-indicator optimization methods for image classification. Jing L; Ng MK IEEE Trans Image Process; 2014 Mar; 23(3):1002-14. PubMed ID: 24474370 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence in Head and Neck Imaging: A Glimpse into the Future. Werth K; Ledbetter L Neuroimaging Clin N Am; 2020 Aug; 30(3):359-368. PubMed ID: 32600636 [TBL] [Abstract][Full Text] [Related]
20. Clarification of assumptions in the relationship between the Bayes Decision Rule and the whitened cosine similarity measure. Liu C IEEE Trans Pattern Anal Mach Intell; 2008 Jun; 30(6):1116-7. PubMed ID: 18421116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]