These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 28827129)

  • 41. Time course changes in corticospinal excitability during repetitive peripheral magnetic stimulation combined with motor imagery.
    Asao A; Wada K; Nomura T; Shibuya K
    Neurosci Lett; 2022 Feb; 771():136427. PubMed ID: 34971770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motor cortical plasticity in extrinsic hand muscles is determined by the resting thresholds of overlapping representations.
    Mirdamadi JL; Suzuki LY; Meehan SK
    Neuroscience; 2016 Oct; 333():132-9. PubMed ID: 27425211
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Corticospinal excitability related to reciprocal muscles during the motor preparation period: effect of movement repetition.
    Suzuki M; Suzuki T; Tanaka S; Sugawara K; Hamaguchi T
    Neuroreport; 2019 Aug; 30(12):856-862. PubMed ID: 31283715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corticospinal Excitability During Actual and Imaginary Motor Tasks of Varied Difficulty.
    Watanabe H; Mizuguchi N; Mayfield DL; Yoshitake Y
    Neuroscience; 2018 Nov; 391():81-90. PubMed ID: 30134204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vibration prolongs the cortical silent period in an antagonistic muscle.
    Binder C; Kaya AE; Liepert J
    Muscle Nerve; 2009 Jun; 39(6):776-80. PubMed ID: 19334048
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm.
    Takahashi K; Kato K; Mizuguchi N; Ushiba J
    J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corticospinal facilitation during first and third person imagery.
    Fourkas AD; Avenanti A; Urgesi C; Aglioti SM
    Exp Brain Res; 2006 Jan; 168(1-2):143-51. PubMed ID: 16044298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of somatosensory input on corticospinal excitability during motor imagery.
    Mizuguchi N; Sakamoto M; Muraoka T; Moriyama N; Nakagawa K; Nakata H; Kanosue K
    Neurosci Lett; 2012 Apr; 514(1):127-30. PubMed ID: 22402190
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Corticomotor excitability changes during mirrored or asynergistic wrist movements.
    Leonard CT; Danna-dos-Santos A; Peters C; Moore M
    Behav Brain Res; 2015 Mar; 281():199-207. PubMed ID: 25529184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Imagined paralysis reduces motor cortex excitability.
    Hartmann M; Falconer CJ; Kaelin-Lang A; Müri RM; Mast FW
    Psychophysiology; 2022 Oct; 59(10):e14069. PubMed ID: 35393640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Corticomotor excitability of wrist flexor and extensor muscles during active and passive movement.
    Chye L; Nosaka K; Murray L; Edwards D; Thickbroom G
    Hum Mov Sci; 2010 Aug; 29(4):494-501. PubMed ID: 20537743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation.
    Roosink M; Zijdewind I
    Behav Brain Res; 2010 Nov; 213(1):35-41. PubMed ID: 20433871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reciprocal changes in input-output curves of motor evoked potentials while learning motor skills.
    Suzuki M; Kirimoto H; Onishi H; Yamada S; Tamaki H; Maruyama A; Yamamoto J
    Brain Res; 2012 Sep; 1473():114-23. PubMed ID: 22871269
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combining observation and imagery of an action enhances human corticospinal excitability.
    Sakamoto M; Muraoka T; Mizuguchi N; Kanosue K
    Neurosci Res; 2009 Sep; 65(1):23-7. PubMed ID: 19463869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Primary motor cortex excitability is modulated with bimanual training.
    Neva JL; Legon W; Staines WR
    Neurosci Lett; 2012 Apr; 514(2):147-51. PubMed ID: 22405809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Movement-specific enhancement of corticospinal excitability at subthreshold levels during motor imagery.
    Li S
    Exp Brain Res; 2007 May; 179(3):517-24. PubMed ID: 17160400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation.
    Darling WG; Wolf SL; Butler AJ
    Exp Brain Res; 2006 Sep; 174(2):376-85. PubMed ID: 16636787
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery.
    Watanabe H; Washino S; Ogoh S; Miyamoto N; Kanehisa H; Kato H; Yoshitake Y
    Eur J Neurosci; 2024 Mar; 59(5):1016-1028. PubMed ID: 38275099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increasing corticospinal excitability in the antagonist muscle during muscle relaxation with a tracking task.
    Yoshida N; Yamaguchi T; Saitou K; Tanabe S; Sugawara K
    Somatosens Mot Res; 2015; 32(1):39-43. PubMed ID: 25994016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.