These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 28827155)

  • 1. Effects of mental workload on involuntary attention: A somatosensory ERP study.
    Mun S; Whang M; Park S; Park MC
    Neuropsychologia; 2017 Nov; 106():7-20. PubMed ID: 28827155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lost in vision: ERP correlates of exogenous tactile attention when engaging in a visual task.
    Jones A; Forster B
    Neuropsychologia; 2013 Mar; 51(4):675-85. PubMed ID: 23340481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance.
    Pergher V; Wittevrongel B; Tournoy J; Schoenmakers B; Van Hulle MM
    Biol Psychol; 2019 Sep; 146():107726. PubMed ID: 31276755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task requirements change signal strength of the primary somatosensory M50: Oddball vs. one-back tasks.
    Götz T; Huonker R; Miltner WH; Witte OW; Dettner K; Weiss T
    Psychophysiology; 2011 Apr; 48(4):569-77. PubMed ID: 20735758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modality-independent reduction mechanisms of primary sensory evoked fields in a one-back task.
    Hanke D; Huonker R; Weiss T; Witte OW; Götz T
    Neuroimage; 2016 Jan; 124(Pt A):918-922. PubMed ID: 26436711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of somatosensory event-related potential components in a tactile-visual cross-modal task.
    Ohara S; Lenz FA; Zhou YD
    Neuroscience; 2006; 138(4):1387-95. PubMed ID: 16442738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule.
    Sambo CF; Forster B
    J Cogn Neurosci; 2009 Aug; 21(8):1550-9. PubMed ID: 18767919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive occupational finger use delays age effects in tactile perception-an ERP study.
    Reuter EM; Voelcker-Rehage C; Vieluf S; Winneke AH; Godde B
    Atten Percept Psychophys; 2014 May; 76(4):1160-75. PubMed ID: 24604541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision and Haptics Share Spatial Attentional Resources and Visuotactile Integration Is Not Affected by High Attentional Load.
    Wahn B; König P
    Multisens Res; 2015; 28(3-4):371-92. PubMed ID: 26288905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty.
    Jaquess KJ; Lo LC; Oh H; Lu C; Ginsberg A; Tan YY; Lohse KR; Miller MW; Hatfield BD; Gentili RJ
    Neuroscience; 2018 Nov; 393():305-318. PubMed ID: 30266685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking.
    Shaw EP; Rietschel JC; Hendershot BD; Pruziner AL; Miller MW; Hatfield BD; Gentili RJ
    Biol Psychol; 2018 Apr; 134():39-51. PubMed ID: 29378284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gating at early cortical processing stages is associated with changes in behavioural performance on a sensory conflict task.
    Adams MS; Popovich C; Staines WR
    Behav Brain Res; 2017 Jan; 317():179-187. PubMed ID: 27641325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a go/nogo task on event-related potentials following somatosensory stimulation.
    Nakata H; Inui K; Nishihira Y; Hatta A; Sakamoto M; Kida T; Wasaka T; Kakigi R
    Clin Neurophysiol; 2004 Feb; 115(2):361-8. PubMed ID: 14744578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal visual experience during development alters the early stages of visual-tactile integration.
    Niechwiej-Szwedo E; Chin J; Wolfe PJ; Popovich C; Staines WR
    Behav Brain Res; 2016 May; 304():111-9. PubMed ID: 26896697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of somatosensory evoked fields in the primary somatosensory cortex in a one-back task.
    Huonker R; Weiss T; Miltner WH
    Exp Brain Res; 2006 Jan; 168(1-2):98-105. PubMed ID: 16078025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of the prefrontal cortex to relevancy-based gating of visual and tactile stimuli.
    Adams MS; Andrew D; Staines WR
    Exp Brain Res; 2019 Oct; 237(10):2747-2759. PubMed ID: 31435693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.
    Ku Y; Ohara S; Wang L; Lenz FA; Hsiao SS; Bodner M; Hong B; Zhou YD
    PLoS One; 2007 Aug; 2(8):e771. PubMed ID: 17712419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention.
    Forschack N; Nierhaus T; Müller MM; Villringer A
    J Neurosci; 2017 Jul; 37(29):6983-6994. PubMed ID: 28630252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.