These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28827288)

  • 1. The Yeast Heterochromatin Protein Sir3 Experienced Functional Changes in the AAA+ Domain After Gene Duplication and Subfunctionalization.
    Hanner AS; Rusche LN
    Genetics; 2017 Oct; 207(2):517-528. PubMed ID: 28827288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication.
    Hickman MA; Rusche LN
    Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19384-9. PubMed ID: 20974972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA replication protein Orc1 from the yeast Torulaspora delbrueckii is required for heterochromatin formation but not as a silencer-binding protein.
    Maria H; Rusche LN
    Genetics; 2022 Aug; 222(1):. PubMed ID: 35894940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in
    Samel A; Rudner A; Ehrenhofer-Murray AE
    G3 (Bethesda); 2017 Apr; 7(4):1117-1126. PubMed ID: 28188183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the Orc1 BAH-nucleosome complex.
    De Ioannes P; Leon VA; Kuang Z; Wang M; Boeke JD; Hochwagen A; Armache KJ
    Nat Commun; 2019 Jul; 10(1):2894. PubMed ID: 31263106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces.
    Gallagher JE; Babiarz JE; Teytelman L; Wolfe KH; Rine J
    Genetics; 2009 Apr; 181(4):1477-91. PubMed ID: 19171939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation.
    Oppikofer M; Kueng S; Keusch JJ; Hassler M; Ladurner AG; Gut H; Gasser SM
    EMBO J; 2013 Feb; 32(3):437-49. PubMed ID: 23299941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain.
    Connelly JJ; Yuan P; Hsu HC; Li Z; Xu RM; Sternglanz R
    Mol Cell Biol; 2006 Apr; 26(8):3256-65. PubMed ID: 16581798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79.
    Ehrentraut S; Hassler M; Oppikofer M; Kueng S; Weber JM; Mueller JW; Gasser SM; Ladurner AG; Ehrenhofer-Murray AE
    Genes Dev; 2011 Sep; 25(17):1835-46. PubMed ID: 21896656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments.
    King DA; Hall BE; Iwamoto MA; Win KZ; Chang JF; Ellenberger T
    J Biol Chem; 2006 Jul; 281(29):20107-19. PubMed ID: 16717101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing.
    Wang X; Connelly JJ; Wang CL; Sternglanz R
    Genetics; 2004 Sep; 168(1):547-51. PubMed ID: 15454564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin.
    Wang SH; Lee SP; Tung SY; Tsai SP; Tsai HC; Shen HH; Hong JY; Su KC; Chen FJ; Liu BH; Wu YY; Hsiao SP; Tsai MS; Liou GG
    Arch Biochem Biophys; 2019 Aug; 671():167-174. PubMed ID: 31295433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sir3-nucleosome interactions in spreading of silent chromatin in Saccharomyces cerevisiae.
    Buchberger JR; Onishi M; Li G; Seebacher J; Rudner AD; Gygi SP; Moazed D
    Mol Cell Biol; 2008 Nov; 28(22):6903-18. PubMed ID: 18794362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sir3 C-terminal domain involvement in the initiation and spreading of heterochromatin.
    Liaw H; Lustig AJ
    Mol Cell Biol; 2006 Oct; 26(20):7616-31. PubMed ID: 16908543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmodium falciparum origin recognition complex subunit 1 (PfOrc1) functionally complements Δsir3 mutant of Saccharomyces cerevisiae.
    Varunan SM; Tripathi J; Bhattacharyya S; Suhane T; Bhattacharyya MK
    Mol Biochem Parasitol; 2013 Sep; 191(1):28-35. PubMed ID: 24018145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3.
    Chang JF; Hall BE; Tanny JC; Moazed D; Filman D; Ellenberger T
    Structure; 2003 Jun; 11(6):637-49. PubMed ID: 12791253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast.
    Ruault M; De Meyer A; Loïodice I; Taddei A
    J Cell Biol; 2011 Feb; 192(3):417-31. PubMed ID: 21300849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing between recruitment and spread of silent chromatin structures in
    Brothers M; Rine J
    Elife; 2022 Jan; 11():. PubMed ID: 35073254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.