These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28827322)

  • 1. Late-stage magmatic outgassing from a volatile-depleted Moon.
    Day JMD; Moynier F; Shearer CK
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9547-9551. PubMed ID: 28827322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.
    Day JM; Moynier F
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130259. PubMed ID: 25114311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LUNAR VOLATILE DEPLETION DUE TO INCOMPLETE ACCRETION WITHIN AN IMPACT-GENERATED DISK.
    Canup RM; Visscher C; Salmon J; Fegley B
    Nat Geosci; 2015; 8():918-921. PubMed ID: 31360221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive volatile loss during formation and differentiation of the Moon.
    Kato C; Moynier F; Valdes MC; Dhaliwal JK; Day JMD
    Nat Commun; 2015 Jul; 6():7617. PubMed ID: 26137962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation.
    Kato C; Moynier F
    Sci Adv; 2017 Jul; 3(7):e1700571. PubMed ID: 28782027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chlorine isotope fingerprint of the lunar magma ocean.
    Boyce JW; Treiman AH; Guan Y; Ma C; Eiler JM; Gross J; Greenwood JP; Stolper EM
    Sci Adv; 2015 Sep; 1(8):e1500380. PubMed ID: 26601265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment.
    Taylor GJ; Wieczorek MA
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130242. PubMed ID: 25114309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extremely heavy chlorine reservoir in the Moon: Insights from the apatite in lunar meteorites.
    Wang Y; Hsu W; Guan Y
    Sci Rep; 2019 Apr; 9(1):5727. PubMed ID: 30952935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes.
    Sossi PA; Moynier F; van Zuilen K
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):10920-10925. PubMed ID: 30297398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cl isotope composition and halogen contents of Apollo-return samples.
    Gargano A; Sharp Z; Shearer C; Simon JI; Halliday A; Buckley W
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23418-23425. PubMed ID: 32900968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lunar apatite paradox.
    Boyce JW; Tomlinson SM; McCubbin FM; Greenwood JP; Treiman AH
    Science; 2014 Apr; 344(6182):400-2. PubMed ID: 24652938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly siderophile element depletion in the Moon.
    Day JMD; Walker RJ
    Earth Planet Sci Lett; 2015 Aug; 423():114-124. PubMed ID: 34465923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium stable isotopes support the lunar magma ocean cumulate remelting model for mare basalts.
    Sedaghatpour F; Jacobsen SB
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):73-78. PubMed ID: 30559183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siderophile element constraints on the origin of the Moon.
    Walker RJ
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130258. PubMed ID: 25114313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A changing thermal regime revealed from shallow to deep basalt source melting in the Moon.
    Srivastava Y; Basu Sarbadhikari A; Day JMD; Yamaguchi A; Takenouchi A
    Nat Commun; 2022 Dec; 13(1):7594. PubMed ID: 36494367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High pre-eruptive water contents preserved in lunar melt inclusions.
    Hauri EH; Weinreich T; Saal AE; Rutherford MC; Van Orman JA
    Science; 2011 Jul; 333(6039):213-5. PubMed ID: 21617039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lunar apatite with terrestrial volatile abundances.
    Boyce JW; Liu Y; Rossman GR; Guan Y; Eiler JM; Stolper EM; Taylor LA
    Nature; 2010 Jul; 466(7305):466-9. PubMed ID: 20651686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditions and extent of volatile loss from the Moon during formation of the Procellarum basin.
    Tartèse R; Sossi PA; Moynier F
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc isotopic evidence for the origin of the Moon.
    Paniello RC; Day JM; Moynier F
    Nature; 2012 Oct; 490(7420):376-9. PubMed ID: 23075987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium isotopic evidence for a high-energy giant impact origin of the Moon.
    Wang K; Jacobsen SB
    Nature; 2016 Oct; 538(7626):487-490. PubMed ID: 27617635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.