BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28827360)

  • 21. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial 2-hydroxyglutarate metabolism.
    Engqvist MK; Eßer C; Maier A; Lercher MJ; Maurino VG
    Mitochondrion; 2014 Nov; 19 Pt B():275-81. PubMed ID: 24561575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A biosensor for D-2-hydroxyglutarate in frozen sections and intraoperative assessment of IDH mutation status.
    Zhang W; Yang M; Wang G; Ou S; Hu J; Liu J; Lei Y; Kang Z; Wang F; Liu J; Ma C; Wang C; Gao C; Tang D
    Biosens Bioelectron; 2024 Mar; 247():115921. PubMed ID: 38104390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Pseudomonas aeruginosa PAO1 metallo flavoprotein d-2-hydroxyglutarate dehydrogenase requires Zn
    Quaye JA; Gadda G
    J Biol Chem; 2023 Mar; 299(3):103008. PubMed ID: 36775127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants of substrate specificity in D-3-phosphoglycerate dehydrogenase. Conversion of the M. tuberculosis enzyme from one that does not use α-ketoglutarate as a substrate to one that does.
    Xu XL; Grant GA
    Arch Biochem Biophys; 2019 Aug; 671():218-224. PubMed ID: 31344342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33.
    Wang R; Yi J; Shang J; Yu W; Li Z; Huang H; Xie H; Wang S
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926728
    [No Abstract]   [Full Text] [Related]  

  • 27. alphaT244M mutation affects the redox, kinetic, and in vitro folding properties of Paracoccus denitrificans electron transfer flavoprotein.
    Griffin KJ; Dwyer TM; Manning MC; Meyer JD; Carpenter JF; Frerman FE
    Biochemistry; 1997 Apr; 36(14):4194-202. PubMed ID: 9100014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. D-2-hydroxyglutaric aciduria Type I: Functional analysis of D2HGDH missense variants.
    Pop A; Struys EA; Jansen EEW; Fernandez MR; Kanhai WA; van Dooren SJM; Ozturk S; van Oostendorp J; Lennertz P; Kranendijk M; van der Knaap MS; Gibson KM; van Schaftingen E; Salomons GS
    Hum Mutat; 2019 Jul; 40(7):975-982. PubMed ID: 30908763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical and Biophysical Characterization of Recombinant Human 3-Phosphoglycerate Dehydrogenase.
    Murtas G; Marcone GL; Peracchi A; Zangelmi E; Pollegioni L
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D-2-hydroxyglutarate dehydrogenase in breast carcinoma as a potent prognostic marker associated with proliferation.
    Hayashi C; Takagi K; Sato A; Yamaguchi M; Minemura H; Miki Y; Harada-Shoji N; Miyashita M; Sasano H; Suzuki T
    Histol Histopathol; 2021 Oct; 36(10):1053-1062. PubMed ID: 34296423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency.
    Cornelius N; Frerman FE; Corydon TJ; Palmfeldt J; Bross P; Gregersen N; Olsen RK
    Hum Mol Genet; 2012 Aug; 21(15):3435-48. PubMed ID: 22611163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidation of a Self-Sustaining Cycle in Escherichia coli l-Serine Biosynthesis That Results in the Conservation of the Coenzyme, NAD.
    Grant GA
    Biochemistry; 2018 Mar; 57(11):1798-1806. PubMed ID: 29494135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of the electron-transfer flavoprotein: ubiquinone oxidoreductase following carbohydrate starvation in Arabidopsis cell cultures.
    Brito DS; Quinhones CGS; Neri-Silva R; Heinemann B; Schertl P; Cavalcanti JHF; Eubel H; Hildebrandt T; Nunes-Nesi A; Braun HP; Araújo WL
    Plant Cell Rep; 2022 Feb; 41(2):431-446. PubMed ID: 35031834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase.
    Ehmsen JT; Ma TM; Sason H; Rosenberg D; Ogo T; Furuya S; Snyder SH; Wolosker H
    J Neurosci; 2013 Jul; 33(30):12464-9. PubMed ID: 23884950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.
    Roberts DL; Salazar D; Fulmer JP; Frerman FE; Kim JJ
    Biochemistry; 1999 Feb; 38(7):1977-89. PubMed ID: 10026281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary coenzyme Q10 deficiency and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency.
    Cornelius N; Byron C; Hargreaves I; Guerra PF; Furdek AK; Land J; Radford WW; Frerman F; Corydon TJ; Gregersen N; Olsen RK
    Hum Mol Genet; 2013 Oct; 22(19):3819-27. PubMed ID: 23727839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501.
    Gao C; Wang Y; Zhang Y; Lv M; Dou P; Xu P; Ma C
    J Bacteriol; 2015 Jul; 197(13):2239-2247. PubMed ID: 25917905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.
    Ouedraogo D; Ball J; Iyer A; Reis RAG; Vodovoz M; Gadda G
    Arch Biochem Biophys; 2017 Oct; 632():192-201. PubMed ID: 28625766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutaryl-coenzyme A dehydrogenase from Geobacter metallireducens - interaction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis.
    Estelmann S; Boll M
    FEBS J; 2014 Nov; 281(22):5120-31. PubMed ID: 25223645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions.
    Cavalcanti JHF; Quinhones CGS; Schertl P; Brito DS; Eubel H; Hildebrandt T; Nunes-Nesi A; Braun HP; Araújo WL
    Physiol Plant; 2017 Dec; 161(4):451-467. PubMed ID: 28767134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.