BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28827385)

  • 1. Pillars Article: The X-Linked Lymphoproliferative Disease Gene Product SAP Regulates Signals Induced through the Co-Receptor SLAM.
    Sayos J; Wu C; Morra M; Wang N; Zhang X; Allen D; van Schaik S; Notarangelo L; Geha R; Roncarolo MG; Oettgen H; De Vries JE; Aversa G; Terhorst C
    J Immunol; 2017 Sep; 199(5):1534-1541. PubMed ID: 28827385
    [No Abstract]   [Full Text] [Related]  

  • 2. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM.
    Sayos J; Wu C; Morra M; Wang N; Zhang X; Allen D; van Schaik S; Notarangelo L; Geha R; Roncarolo MG; Oettgen H; De Vries JE; Aversa G; Terhorst C
    Nature; 1998 Oct; 395(6701):462-9. PubMed ID: 9774102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gene defective in X-linked lymphoproliferative disease controls T cell dependent immune surveillance against Epstein-Barr virus.
    Howie D; Sayos J; Terhorst C; Morra M
    Curr Opin Immunol; 2000 Aug; 12(4):474-8. PubMed ID: 10899030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product.
    Latour S; Gish G; Helgason CD; Humphries RK; Pawson T; Veillette A
    Nat Immunol; 2001 Aug; 2(8):681-90. PubMed ID: 11477403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease.
    Nichols KE; Ma CS; Cannons JL; Schwartzberg PL; Tangye SG
    Immunol Rev; 2005 Feb; 203():180-99. PubMed ID: 15661030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T Cells Regulate Peripheral Naive Mature B Cell Survival by Cell-Cell Contact Mediated through SLAMF6 and SAP.
    Radomir L; Cohen S; Kramer MP; Bakos E; Lewinsky H; Barak A; Porat Z; Bucala R; Stepensky P; Becker-Herman S; Shachar I
    J Immunol; 2017 Oct; 199(8):2745-2757. PubMed ID: 28904129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAP: natural inhibitor or grand SLAM of T cell activation?
    Nichols KE; Koretzky GA; June CH
    Nat Immunol; 2001 Aug; 2(8):665-6. PubMed ID: 11477397
    [No Abstract]   [Full Text] [Related]  

  • 8. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease.
    Engel P; Eck MJ; Terhorst C
    Nat Rev Immunol; 2003 Oct; 3(10):813-21. PubMed ID: 14523387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules.
    Ma CS; Nichols KE; Tangye SG
    Annu Rev Immunol; 2007; 25():337-79. PubMed ID: 17201683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct interactions of the X-linked lymphoproliferative syndrome gene product SAP with cytoplasmic domains of members of the CD2 receptor family.
    Lewis J; Eiben LJ; Nelson DL; Cohen JI; Nichols KE; Ochs HD; Notarangelo LD; Duckett CS
    Clin Immunol; 2001 Jul; 100(1):15-23. PubMed ID: 11414741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunology. Sinking surveillance's flagship.
    Klein G; Klein E
    Nature; 1998 Oct; 395(6701):441, 443-4. PubMed ID: 9774094
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of SLAM-associated protein in the pathogenesis of autoimmune diseases and immunological disorders.
    Furukawa H; Tohma S; Kitazawa H; Komori H; Nose M; Ono M
    Arch Immunol Ther Exp (Warsz); 2010 Feb; 58(1):37-44. PubMed ID: 20049647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAP couples Fyn to SLAM immune receptors.
    Chan B; Lanyi A; Song HK; Griesbach J; Simarro-Grande M; Poy F; Howie D; Sumegi J; Terhorst C; Eck MJ
    Nat Cell Biol; 2003 Feb; 5(2):155-60. PubMed ID: 12545174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation.
    Cannons JL; Yu LJ; Jankovic D; Crotty S; Horai R; Kirby M; Anderson S; Cheever AW; Sher A; Schwartzberg PL
    J Exp Med; 2006 Jun; 203(6):1551-65. PubMed ID: 16754717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective.
    Panchal N; Booth C; Cannons JL; Schwartzberg PL
    Front Immunol; 2018; 9():666. PubMed ID: 29670631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP.
    Czar MJ; Kersh EN; Mijares LA; Lanier G; Lewis J; Yap G; Chen A; Sher A; Duckett CS; Ahmed R; Schwartzberg PL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7449-54. PubMed ID: 11404475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why commonplace encounters turn to fatal attraction.
    Sadelain M; Kieff E
    Nat Genet; 1998 Oct; 20(2):103-4. PubMed ID: 9771693
    [No Abstract]   [Full Text] [Related]  

  • 18. Importance and mechanism of 'switch' function of SAP family adapters.
    Veillette A; Dong Z; Pérez-Quintero LA; Zhong MC; Cruz-Munoz ME
    Immunol Rev; 2009 Nov; 232(1):229-39. PubMed ID: 19909367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLAM Associated Protein Signaling in T Cells: Tilting the Balance Toward Autoimmunity.
    Gartshteyn Y; Askanase AD; Mor A
    Front Immunol; 2021; 12():654839. PubMed ID: 33936082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [X-linked lymphoproliferative syndrome, EBV virus infection and defects in cytotoxicity lymphocyte regulation].
    Malbrán A; Belmonte L; Ruibal-Ares B; Baré P; Bracco MM
    Medicina (B Aires); 2003; 63(1):70-6. PubMed ID: 12673966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.