These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28827451)

  • 1. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight.
    Johnson CM; Subramanian A; Pattathil S; Correll MJ; Kiss JZ
    Am J Bot; 2017 Aug; 104(8):1219-1231. PubMed ID: 28827451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment.
    Johnson CM; Subramanian A; Edelmann RE; Kiss JZ
    J Plant Res; 2015 Nov; 128(6):1007-16. PubMed ID: 26376793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development.
    Kwon T; Sparks JA; Nakashima J; Allen SN; Tang Y; Blancaflor EB
    Am J Bot; 2015 Jan; 102(1):21-35. PubMed ID: 25587145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.
    Zupanska AK; Schultz ER; Yao J; Sng NJ; Zhou M; Callaham JB; Ferl RJ; Paul AL
    Astrobiology; 2017 Nov; 17(11):1077-1111. PubMed ID: 29088549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth in spaceflight hardware results in alterations to the transcriptome and proteome.
    Basu P; Kruse CPS; Luesse DR; Wyatt SE
    Life Sci Space Res (Amst); 2017 Nov; 15():88-96. PubMed ID: 29198318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight.
    Choi WG; Barker RJ; Kim SH; Swanson SJ; Gilroy S
    Am J Bot; 2019 Jan; 106(1):123-136. PubMed ID: 30644539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity.
    Millar KD; Johnson CM; Edelmann RE; Kiss JZ
    Astrobiology; 2011 Oct; 11(8):787-97. PubMed ID: 21970704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative transcriptomics and proteomics profiling of
    Olanrewaju GO; Haveman NJ; Naldrett MJ; Paul AL; Ferl RJ; Wyatt SE
    Front Plant Sci; 2023; 14():1260429. PubMed ID: 38089794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes.
    Correll MJ; Pyle TP; Millar KD; Sun Y; Yao J; Edelmann RE; Kiss JZ
    Planta; 2013 Sep; 238(3):519-33. PubMed ID: 23771594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spaceflight transcriptomes: unique responses to a novel environment.
    Paul AL; Zupanska AK; Ostrow DT; Zhang Y; Sun Y; Li JL; Shanker S; Farmerie WG; Amalfitano CE; Ferl RJ
    Astrobiology; 2012 Jan; 12(1):40-56. PubMed ID: 22221117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.
    Zupanska AK; LeFrois C; Ferl RJ; Paul AL
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30658467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity.
    Nakashima J; Liao F; Sparks JA; Tang Y; Blancaflor EB
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():142-50. PubMed ID: 23952736
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Su SH; Levine HG; Masson PH
    Life (Basel); 2023 Feb; 13(3):. PubMed ID: 36983782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved plant transcriptional responses to microgravity from two consecutive spaceflight experiments.
    Land ES; Sheppard J; Doherty CJ; Perera IY
    Front Plant Sci; 2023; 14():1308713. PubMed ID: 38259952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight.
    Paul AL; Zupanska AK; Schultz ER; Ferl RJ
    BMC Plant Biol; 2013 Aug; 13():112. PubMed ID: 23919896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflight.
    Nakashima J; Pattathil S; Avci U; Chin S; Alan Sparks J; Hahn MG; Gilroy S; Blancaflor EB
    NPJ Microgravity; 2023 Aug; 9(1):68. PubMed ID: 37608048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spaceflight induces specific alterations in the proteomes of Arabidopsis.
    Ferl RJ; Koh J; Denison F; Paul AL
    Astrobiology; 2015 Jan; 15(1):32-56. PubMed ID: 25517942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
    Zupanska AK; Denison FC; Ferl RJ; Paul AL
    Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test of
    Barker R; Lombardino J; Rasmussen K; Gilroy S
    Front Plant Sci; 2020; 11():147. PubMed ID: 32265943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in Arabidopsis leaf ultrastructure, chlorophyll and carbohydrate content during spaceflight depend on ventilation.
    Musgrave ME; Kuang A; Brown CS; Matthews SW
    Ann Bot; 1998 Apr; 81(4):503-12. PubMed ID: 11541287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.