BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28827628)

  • 1. Phytotoxic dioxolanones are potential virulence factors in the infection process of Guignardia bidwellii.
    Buckel I; Andernach L; Schüffler A; Piepenbring M; Opatz T; Thines E
    Sci Rep; 2017 Aug; 7(1):8926. PubMed ID: 28827628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenguignardic acid and guignardic acid, phytotoxic secondary metabolites from Guignardia bidwellii.
    Molitor D; Liermann JC; Berkelmann-Löhnertz B; Buckel I; Opatz T; Thines E
    J Nat Prod; 2012 Jul; 75(7):1265-9. PubMed ID: 22779915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxic dioxolanone-type secondary metabolites from Guignardia bidwellii.
    Buckel I; Molitor D; Liermann JC; Sandjo LP; Berkelmann-Löhnertz B; Opatz T; Thines E
    Phytochemistry; 2013 May; 89():96-103. PubMed ID: 23406659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular, proteomic and morphological characterization of the ascomycete Guignardia bidwellii, agent of grape black rot: a polyphasic approach to fungal identification.
    Wicht B; Petrini O; Jermini M; Gessler C; Broggini GA
    Mycologia; 2012; 104(5):1036-45. PubMed ID: 22492405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three phytotoxins produced by Neopestalotiopsis clavispora, the causal agent of ring spot on Kadsura coccinea.
    Xie J; Wei JG; Wang KW; Luo J; Wu YJ; Luo JT; Yang XH; Yang XB
    Microbiol Res; 2020 Sep; 238():126531. PubMed ID: 32603933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of Pycnidia and Conidia by Guignardia bidwellii, the Causal Agent of Grape Black Rot, as Affected by Temperature and Humidity.
    Onesti G; González-Domínguez E; Rossi V
    Phytopathology; 2017 Feb; 107(2):173-183. PubMed ID: 27726499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock 'Börner' (V. riparia Gm183 × V. cinerea Arnold).
    Rex F; Fechter I; Hausmann L; Töpfer R
    Theor Appl Genet; 2014 Jul; 127(7):1667-77. PubMed ID: 24865508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of black rot epidemics in vineyards using a weather-driven disease model.
    Onesti G; González-Domínguez E; Rossi V
    Pest Manag Sci; 2016 Dec; 72(12):2321-2329. PubMed ID: 26996951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cumulative Degree-Day-Based Model to Calculate the Duration of the Incubation Period of Guignardia bidwellii.
    Molitor D; Fruehauf C; Baus O; Berkelmann-Loehnertz B
    Plant Dis; 2012 Jul; 96(7):1054-1059. PubMed ID: 30727216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil.
    Cimmino A; Cinelli T; Masi M; Reveglia P; da Silva MA; Mugnai L; Michereff SJ; Surico G; Evidente A
    J Agric Food Chem; 2017 Feb; 65(6):1102-1107. PubMed ID: 28110532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytotoxic metabolites produced by
    Reveglia P; Pacetti A; Masi M; Cimmino A; Carella G; Marchi G; Mugnai L; Evidente A
    Nat Prod Res; 2021 Sep; 35(17):2872-2880. PubMed ID: 31674838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
    Lu S; Gillian Turgeon B; Edwards MC
    Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens.
    Morales-Cruz A; Amrine KC; Blanco-Ulate B; Lawrence DP; Travadon R; Rolshausen PE; Baumgartner K; Cantu D
    BMC Genomics; 2015 Jun; 16(1):469. PubMed ID: 26084502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of black yeasts: possible adaptation to the human host.
    de Hoog GS
    Antonie Van Leeuwenhoek; 1993 Feb; 63(2):105-9. PubMed ID: 8259828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bright future of darkness--the rising power of black fungi: black yeasts, microcolonial fungi, and their relatives.
    de Hoog GS; Vicente VA; Gorbushina AA
    Mycopathologia; 2013 Jun; 175(5-6):365-8. PubMed ID: 23715632
    [No Abstract]   [Full Text] [Related]  

  • 16.
    Lam WH; Sze KH; Ke Y; Tse MK; Zhang H; Woo PCY; Lau SKP; Lau CCY; Xu S; Lai PM; Zhou T; Antonyuk SV; Kao RYT; Yuen KY; Hao Q
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30670555
    [No Abstract]   [Full Text] [Related]  

  • 17. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response.
    Paolinelli-Alfonso M; Villalobos-Escobedo JM; Rolshausen P; Herrera-Estrella A; Galindo-Sánchez C; López-Hernández JF; Hernandez-Martinez R
    BMC Genomics; 2016 Aug; 17(1):615. PubMed ID: 27514986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing the Efficacy of Myclobutanil and Azoxystrobin for Control of Grape Black Rot.
    Hoffman LE; Wilcox WF
    Plant Dis; 2003 Mar; 87(3):273-281. PubMed ID: 30812760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Three New Phytotoxins from the Fungus
    Liao L; Zhang X; Lou Y; Zhou C; Yuan Q; Gao J
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30708999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luteoethanones A and B, two phytotoxic 1-substituted ethanones produced by
    Masi M; Reveglia P; Femina G; Baaijens-Billones R; Savocchia S; Evidente A
    Nat Prod Res; 2021 Nov; 35(22):4542-4549. PubMed ID: 32202153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.