These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28827812)

  • 1. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate.
    Irnov I; Wang Z; Jannetty ND; Bustamante JA; Rhee KY; Jacobs-Wagner C
    PLoS Genet; 2017 Aug; 13(8):e1006978. PubMed ID: 28827812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis.
    Jain A; Chen WN
    Appl Microbiol Biotechnol; 2018 May; 102(10):4563-4575. PubMed ID: 29616314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
    Billini M; Biboy J; Kühn J; Vollmer W; Thanbichler M
    PLoS Genet; 2019 Feb; 15(2):e1007897. PubMed ID: 30707707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.
    Strobel W; Möll A; Kiekebusch D; Klein KE; Thanbichler M
    J Bacteriol; 2014 Apr; 196(8):1627-39. PubMed ID: 24532768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.
    Divakaruni AV; Baida C; White CL; Gober JW
    Mol Microbiol; 2007 Oct; 66(1):174-88. PubMed ID: 17880425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD.
    White CL; Kitich A; Gober JW
    Mol Microbiol; 2010 May; 76(3):616-33. PubMed ID: 20233306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus.
    Meier EL; Daitch AK; Yao Q; Bhargava A; Jensen GJ; Goley ED
    PLoS Genet; 2017 Sep; 13(9):e1006999. PubMed ID: 28886022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic growth dynamics control cell division in Caulobacter crescentus.
    Banerjee S; Lo K; Daddysman MK; Selewa A; Kuntz T; Dinner AR; Scherer NF
    Nat Microbiol; 2017 Jul; 2():17116. PubMed ID: 28737755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of chromosomal replication in Caulobacter crescentus.
    Collier J
    Plasmid; 2012 Mar; 67(2):76-87. PubMed ID: 22227374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease regulation and capacity during Caulobacter growth.
    Vass RH; Zeinert RD; Chien P
    Curr Opin Microbiol; 2016 Dec; 34():75-81. PubMed ID: 27543838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus.
    Shapland EB; Reisinger SJ; Bajwa AK; Ryan KR
    J Bacteriol; 2011 Sep; 193(17):4361-70. PubMed ID: 21705597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus.
    Aaron M; Charbon G; Lam H; Schwarz H; Vollmer W; Jacobs-Wagner C
    Mol Microbiol; 2007 May; 64(4):938-52. PubMed ID: 17501919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.
    Yakhnina AA; Gitai Z
    J Bacteriol; 2013 Oct; 195(19):4527-35. PubMed ID: 23935048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus.
    Gorbatyuk B; Marczynski GT
    Mol Microbiol; 2005 Feb; 55(4):1233-45. PubMed ID: 15686567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-oscillator model of Caulobacter crescentus.
    Vandecan Y; Biondi E; Blossey R
    Phys Rev E; 2016 Jun; 93(6):062413. PubMed ID: 27415304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle.
    Holtzendorff J; Hung D; Brende P; Reisenauer A; Viollier PH; McAdams HH; Shapiro L
    Science; 2004 May; 304(5673):983-7. PubMed ID: 15087506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved transcriptional regulator CdnL is required for metabolic homeostasis and morphogenesis in Caulobacter.
    Woldemeskel SA; Daitch AK; Alvarez L; Panis G; Zeinert R; Gonzalez D; Smith E; Collier J; Chien P; Cava F; Viollier PH; Goley ED
    PLoS Genet; 2020 Jan; 16(1):e1008591. PubMed ID: 31961855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processivity of peptidoglycan synthesis provides a built-in mechanism for the robustness of straight-rod cell morphology.
    Sliusarenko O; Cabeen MT; Wolgemuth CW; Jacobs-Wagner C; Emonet T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10086-91. PubMed ID: 20479277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.