These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28827843)

  • 1. The passive biomechanics of human pelvic collecting lymphatic vessels.
    Athanasiou D; Edgar LT; Jafarnejad M; Nixon K; Duarte D; Hawkins ED; Jamalian S; Cunnea P; Lo Celso C; Kobayashi S; Fotopoulou C; Moore JE
    PLoS One; 2017; 12(8):e0183222. PubMed ID: 28827843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
    Rahbar E; Weimer J; Gibbs H; Yeh AT; Bertram CD; Davis MJ; Hill MA; Zawieja DC; Moore JE
    Lymphat Res Biol; 2012 Dec; 10(4):152-63. PubMed ID: 23145980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axial stretch regulates rat tail collecting lymphatic vessel contractions.
    Razavi MS; Leonard-Duke J; Hardie B; Dixon JB; Gleason RL
    Sci Rep; 2020 Apr; 10(1):5918. PubMed ID: 32246026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the passive and active biaxial mechanical behaviour and microstructural organization of rat thoracic ducts.
    Caulk AW; Nepiyushchikh ZV; Shaw R; Dixon JB; Gleason RL
    J R Soc Interface; 2015 Jul; 12(108):20150280. PubMed ID: 26040600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure and mechanical properties of collecting lymphatic vessels: an investigation using multimodal nonlinear microscopy.
    Arkill KP; Moger J; Winlove CP
    J Anat; 2010 May; 216(5):547-55. PubMed ID: 20345855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational model of a network of initial lymphatics and pre-collectors with permeable interstitium.
    Ikhimwin BO; Bertram CD; Jamalian S; Macaskill C
    Biomech Model Mechanobiol; 2020 Apr; 19(2):661-676. PubMed ID: 31696326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure.
    Scallan JP; Wolpers JH; Davis MJ
    J Physiol; 2013 Jan; 591(2):443-59. PubMed ID: 23045335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch.
    Davis MJ; Davis AM; Lane MM; Ku CW; Gashev AA
    J Physiol; 2009 Jan; 587(1):165-82. PubMed ID: 19001046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
    Razavi MS; Dixon JB; Gleason RL
    J R Soc Interface; 2020 Sep; 17(170):20200598. PubMed ID: 32993429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome.
    Zawieja SD; Wang W; Wu X; Nepiyushchikh ZV; Zawieja DC; Muthuchamy M
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H643-53. PubMed ID: 22159997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous and Evoked Contractility of Human Intestinal Lymphatic Vessels.
    Telinius N; Majgaard J; Mohanakumar S; Pahle E; Nielsen J; Hjortdal V; Aalkjær C; Boedtkjer DB
    Lymphat Res Biol; 2017 Mar; 15(1):17-22. PubMed ID: 28277905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-dependence of lymphatic phasic contractile activity under isometric and isobaric conditions.
    Zhang R; Gashev AA; Zawieja DC; Lane MM; Davis MJ
    Microcirculation; 2007 Aug; 14(6):613-25. PubMed ID: 17710632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanobiology of lymphatic contractions.
    Munn LL
    Semin Cell Dev Biol; 2015 Feb; 38():67-74. PubMed ID: 25636584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for Assessing the Contractile Function of Mouse Lymphatic Vessels Ex Vivo.
    Castorena-Gonzalez JA; Scallan JP; Davis MJ
    Methods Mol Biol; 2018; 1846():229-248. PubMed ID: 30242763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous activity in peripheral diaphragmatic lymphatic loops.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(7):H987-95. PubMed ID: 23893166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myogenic constriction and dilation of isolated lymphatic vessels.
    Davis MJ; Davis AM; Ku CW; Gashev AA
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H293-302. PubMed ID: 19028793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling.
    Razavi MS; Nelson TS; Nepiyushchikh Z; Gleason RL; Dixon JB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1249-H1260. PubMed ID: 28778909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lymphatic vessels transition to state of summation above a critical contraction frequency.
    Meisner JK; Stewart RH; Laine GA; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R200-8. PubMed ID: 17363681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.