These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28828413)

  • 41. Honeycomb-like periodic porous LaFeO₃ thin film chemiresistors with enhanced gas-sensing performances.
    Dai Z; Lee CS; Kim BY; Kwak CH; Yoon JW; Jeong HM; Lee JH
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16217-26. PubMed ID: 25166756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing.
    Ivanova A; Frka-Petesic B; Paul A; Wagner T; Jumabekov AN; Vilk Y; Weber J; Schmedt Auf der Günne J; Vignolini S; Tiemann M; Fattakhova-Rohlfing D; Bein T
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12639-12647. PubMed ID: 31898457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and thickness-dependent gas sensing responses to NO
    Su X; Duan G; Xu Z; Zhou F; Cai W
    J Colloid Interface Sci; 2017 Oct; 503():150-158. PubMed ID: 28521217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods.
    Patil D; Patil P; Subramanian V; Joy PA; Potdar HS
    Talanta; 2010 Apr; 81(1-2):37-43. PubMed ID: 20188884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu-ZnO thin films.
    Tabassum R; Mishra SK; Gupta BD
    Phys Chem Chem Phys; 2013 Jul; 15(28):11868-74. PubMed ID: 23764905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface morphology-dependent room-temperature LaFeO₃ nanostructure thin films as selective NO₂ gas sensor prepared by radio frequency magnetron sputtering.
    Thirumalairajan S; Girija K; Mastelaro VR; Ponpandian N
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13917-27. PubMed ID: 25029197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CuO-ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S.
    Xu Z; Duan G; Li Y; Liu G; Zhang H; Dai Z; Cai W
    Chemistry; 2014 May; 20(20):6040-6. PubMed ID: 24711055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low Temperature Co-Fired Ceramic-Based and Heater-Embedded Toxic Gas Sensors with Nanostructured SnO₂ Thick Films.
    Ji CW; Mun JD; Yoon CB; Lee HC
    J Nanosci Nanotechnol; 2019 Aug; 19(8):5227-5232. PubMed ID: 30913838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnesium Zirconate Titanate Thin Films Used as an NO
    Huang PS; Lee KJ; Wang YH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties.
    Park S; An S; Ko H; Jin C; Lee C
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3650-6. PubMed ID: 22746969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visible photoassisted room-temperature oxidizing gas-sensing behavior of Sn
    Liang YC; Lung TW; Wang CC
    Nanoscale Res Lett; 2016 Dec; 11(1):505. PubMed ID: 27854080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.
    Tran VD; Nguyen DH; Nguyen VD; Nguyen VH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4828-37. PubMed ID: 26816341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polymer/Graphene oxide nanocomposite thin film for NO
    Sahu PK; Pandey RK; Dwivedi R; Mishra VN; Prakash R
    Sci Rep; 2020 Feb; 10(1):2981. PubMed ID: 32076004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Selective and Low-Power Carbon Monoxide Gas Sensor Based on the Chain Reaction of Oxygen and Carbon Monoxide to WO
    Jung G; Hong S; Jeong Y; Shin W; Park J; Kim D; Lee JH
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17950-17958. PubMed ID: 35385642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NiO thin film fabricated by electrophoretic deposition and formaldehyde gas sensing property thereof.
    Han N; Tian Y; Wei L; Wang C; Chen Y
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1346-9. PubMed ID: 19441521
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defect-Induced Adsorption Switching (p- to n- Type) in Conducting Bare Carbon Nanotube Film for the Development of Highly Sensitive and Flexible Chemiresistive-Based Methanol and NO
    Prakash J; Rao PT; Rohilla R; Nechiyil D; Kaur M; Ganapathi KS; Debnath AK; Kaushal A; Bahadur J; Dasgupta K
    ACS Omega; 2023 Feb; 8(7):6708-6719. PubMed ID: 36844608
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly selective and sensitive response of 30.5 % of sprayed molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection.
    Mane AA; Suryawanshi MP; Kim JH; Moholkar AV
    J Colloid Interface Sci; 2016 Dec; 483():220-231. PubMed ID: 27552430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable nanostructured columnar growth of SnO
    Singh A; Sharma A; Tomar M; Gupta V
    Nanotechnology; 2018 Feb; 29(6):065502. PubMed ID: 29155412
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the Response of Magnetron Sputtered In
    Panzardi E; Calisi N; Enea N; Fort A; Mugnaini M; Vignoli V; Vinattieri A; Bruzzi M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temperature-Dependent Abnormal and Tunable p-n Response of Tungsten Oxide--Tin Oxide Based Gas Sensors.
    Li H; Xie W; Ye T; Liu B; Xiao S; Wang C; Wang Y; Li Q; Wang T
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24887-94. PubMed ID: 26495911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.