BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28828416)

  • 1. Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.
    Lu Y; Lee JH; Chen IW
    Nanoscale; 2017 Aug; 9(34):12690-12697. PubMed ID: 28828416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing uniform switching from filamentary switching in resistance memory using a fracture test.
    Lu Y; Lee JH; Yang X; Chen IW
    Nanoscale; 2016 Oct; 8(42):18113-18120. PubMed ID: 27735005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.
    Yang X; Chen IW
    Sci Rep; 2012; 2():744. PubMed ID: 23077728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Area-Selective Atomic Layer Deposition for Resistive Random-Access Memory Devices.
    Oh IK; Khan AI; Qin S; Lee Y; Wong HP; Pop E; Bent SF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43087-43093. PubMed ID: 37656599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Self-Aligned Selector Based on Ultra-Thin Metal Oxide for Resistive Random-Access Memory (RRAM) Crossbar Arrays.
    Fedotov M; Korotitsky V; Koveshnikov S
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presetting conductive pathway induced the switching uniformity evolution of a-SiN
    Sun Y; Ma Z; Jiang X; Tan D; Zhang H; Zhang X; Liu J; Yang H; Li W; Xu L; Chen K; Feng D
    Nanotechnology; 2018 Oct; 29(41):415701. PubMed ID: 30004387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasitic engineering for RRAM control.
    Shrestha PR; Nminibapiel DM; Veksler D; Campbell JP; Ryan JT; Baumgart H; Cheung KP
    Solid State Electron; 2018; 150():. PubMed ID: 31555017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of electrical stimulus methods of
    Zhang Y; Wang C; Wu X
    Nanoscale; 2022 Jul; 14(27):9542-9552. PubMed ID: 35762914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sol-Gel-Processed Y
    Lee T; Kim HI; Cho Y; Lee S; Lee WY; Bae JH; Kang IM; Kim K; Lee SH; Jang J
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments.
    Chen KH; Tsai TM; Cheng CM; Huang SJ; Chang KC; Liang SP; Young TF
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29283368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of nanoscale filamentary hot spots in resistive memory devices.
    Deshmukh S; Rojo MM; Yalon E; Vaziri S; Koroglu C; Islam R; Iglesias RA; Saraswat K; Pop E
    Sci Adv; 2022 Apr; 8(13):eabk1514. PubMed ID: 35353574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of Cu-Doping on the Performance of La-Based RRAM Devices.
    Wang Y; Liu H; Wang X; Zhao L
    Nanoscale Res Lett; 2019 Jul; 14(1):224. PubMed ID: 31289960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application.
    Shen Z; Zhao C; Qi Y; Xu W; Liu Y; Mitrovic IZ; Yang L; Zhao C
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32717952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and chemical mechanisms in oxide-based resistance random access memory.
    Chang KC; Chang TC; Tsai TM; Zhang R; Hung YC; Syu YE; Chang YF; Chen MC; Chu TJ; Chen HL; Pan CH; Shih CC; Zheng JC; Sze SM
    Nanoscale Res Lett; 2015; 10():120. PubMed ID: 25873842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical Simulation of the Switching Mechanism in ZnO-Based RRAM Devices.
    Bature UI; Nawi IM; Khir MHM; Zahoor F; Algamili AS; Hashwan SSB; Zakariya MA
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devices.
    Carta D; Guttmann P; Regoutz A; Khiat A; Serb A; Gupta I; Mehonic A; Buckwell M; Hudziak S; Kenyon AJ; Prodromakis T
    Nanotechnology; 2016 Aug; 27(34):345705. PubMed ID: 27420908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the influence of surrounding materials and realization of multi-level storage in resistive switching memory.
    Chang KC; Dai T; Li L; Lin X; Zhang S; Lai YC; Liu HJ; Syu YE
    Nanoscale; 2020 Nov; 12(43):22070-22074. PubMed ID: 33030167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of GO and r-GO in resistance switching behavior of bilayer TiO
    Srivastava S; Dey P; Asapu S; Maiti T
    Nanotechnology; 2018 Dec; 29(50):505702. PubMed ID: 30211700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.