These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 2882843)

  • 1. Clozapine: neuroendocrine studies of an atypical neuroleptic.
    Meltzer HY; Nash JF; Koenig JI; Gudelsky GA
    Clin Neuropharmacol; 1986; 9 Suppl 4():316-8. PubMed ID: 2882843
    [No Abstract]   [Full Text] [Related]  

  • 2. Melperone and clozapine: neuroendocrine effects of atypical neuroleptic drugs.
    Meltzer HY; Koenig JI; Nash JF; Gudelsky GA
    Acta Psychiatr Scand Suppl; 1989; 352():24-9. PubMed ID: 2573238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of haloperidol, clozapine, and fluperlapine on tuberoinfundibular dopamine neurons and prolactin secretion in the rat.
    Gudelsky GA; Koenig JI; Simonovic M; Koyama T; Ohmori T; Meltzer HY
    J Neural Transm; 1987; 68(3-4):227-40. PubMed ID: 3104536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioural indices of the interaction of clozapine with D1 and D2 dopamine receptors.
    Murray AM; Waddington JL
    Br J Pharmacol; 1989 Dec; 98 Suppl():814P. PubMed ID: 2611521
    [No Abstract]   [Full Text] [Related]  

  • 5. Pharmacology of fluperlapine compared with clozapine.
    Eichenberger E
    Arzneimittelforschung; 1984; 34(1A):110-3. PubMed ID: 6145425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobehavioral evidence for mesolimbic specificity of action by clozapine: studies using electrical intracranial self-stimulation.
    Gardner EL; Seeger TF
    Biol Psychiatry; 1983 Dec; 18(12):1357-62. PubMed ID: 6661466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic biology of clozapine: electrophysiological and neuroendocrinological studies.
    Gudelsky GA; Nash JF; Berry SA; Meltzer HY
    Psychopharmacology (Berl); 1989; 99 Suppl():S13-7. PubMed ID: 2682728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of haloperidol and low dose clozapine on the acetylcholine turnover rate in rat forebrain structures.
    Bluth R; Langnickel R
    Biomed Biochim Acta; 1985; 44(10):1531-9. PubMed ID: 4084256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of clozapine and other neuroleptics on binding of [3H]-Q ICS 205-930 to central 5-HT3 recognition sites.
    Watling KJ; Beer MS; Stanton JA
    Br J Pharmacol; 1989 Dec; 98 Suppl():813P. PubMed ID: 2575419
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of clozapine and other dibenzo-epines on central dopaminergic and cholinergic systems. Structure-activity relationships.
    Bürki HR; Sayers AC; Ruch W; Asper H
    Arzneimittelforschung; 1977; 27(8):1561-5. PubMed ID: 20900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic clozapine, but not haloperidol, alters the response of mesoprefrontal dopamine neurons to stress and clozapine challenges in rats.
    Morrow BA; Rosenberg SJ; Roth RH
    Synapse; 1999 Oct; 34(1):28-35. PubMed ID: 10459169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroendocrine evidence for antagonism of serotonin and dopamine receptors by olanzapine (LY170053), an antipsychotic drug candidate.
    Fuller RW; Snoddy HD
    Res Commun Chem Pathol Pharmacol; 1992 Jul; 77(1):87-93. PubMed ID: 1359615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clozapine and haloperidol in the amygdaloid complex: differential effects on dopamine transmission with long-term treatment.
    Anderson GD; Rebec GV
    Biol Psychiatry; 1988 Mar; 23(5):497-506. PubMed ID: 2830920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PNU-96415E, a potential antipsychotic agent with clozapine-like pharmacological properties.
    Tang AH; Franklin SR; Himes CS; Smith MW; Tenbrink RE
    J Pharmacol Exp Ther; 1997 Apr; 281(1):440-7. PubMed ID: 9103528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clozapine, but not haloperidol, increases neuropeptide Y neuronal expression in the rat hypothalamus.
    Kirk SL; Cahir M; Reynolds GP
    J Psychopharmacol; 2006 Jul; 20(4):577-9. PubMed ID: 16401646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate agonist activity: implications for antipsychotic drug action and schizophrenia.
    Banerjee SP; Zuck LG; Yablonsky-Alter E; Lidsky TI
    Neuroreport; 1995 Dec; 6(18):2500-4. PubMed ID: 8741750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A study on the pharmacological properties of atypical antipsychotic drugs: in vivo dopamine and serotonin receptor occupancy by atypical antipsychotic drugs in the rat brain].
    Matsubara R
    Hokkaido Igaku Zasshi; 1993 Jul; 68(4):570-82. PubMed ID: 7687976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Typical and atypical antipsychotic drugs target dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa and neurotensin-containing neurons, but not GABAergic interneurons in the shell of nucleus accumbens of ventral striatum.
    Ma J; Ye N; Cohen BM
    Neuroscience; 2006 Sep; 141(3):1469-80. PubMed ID: 16781818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The atypical antipsychotic profile of NRA0045, a novel dopamine D4 and 5-hydroxytryptamine2A receptor antagonist, in rats.
    Okuyama S; Chaki S; Kawashima N; Suzuki Y; Ogawa S; Kumagai T; Nakazato A; Nagamine M; Yamaguchi K; Tomisawa K
    Br J Pharmacol; 1997 Jun; 121(3):515-25. PubMed ID: 9179395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effects of JL 13, a potential atypical antipsychotic, on rat dopamine and serotonin receptor subtypes.
    Moran-Gates T; Massari C; Graulich A; Liégeois JF; Tarazi FI
    J Neurosci Res; 2006 Aug; 84(3):675-82. PubMed ID: 16810690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.