BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28828542)

  • 1. Application of 3-D Fluorescence: Characterization of Natural Organic Matter in Natural Water and Water Purification Systems.
    Zhu G; Bian Y; Hursthouse AS; Wan P; Szymanska K; Ma J; Wang X; Zhao Z
    J Fluoresc; 2017 Nov; 27(6):2069-2094. PubMed ID: 28828542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.
    Pressman JG; McCurry DL; Parvez S; Rice GE; Teuschler LK; Miltner RJ; Speth TF
    Water Res; 2012 Oct; 46(16):5343-54. PubMed ID: 22846256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control.
    Kim HC; Yu MJ
    Water Res; 2005 Nov; 39(19):4779-89. PubMed ID: 16253305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of alum coagulation on the character, biodegradability and disinfection by-product formation potential of reservoir natural organic matter (NOM) fractions.
    Soh YC; Roddick F; van Leeuwen J
    Water Sci Technol; 2008; 58(6):1173-9. PubMed ID: 18845853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO
    Gora SL; Andrews SA
    Chemosphere; 2017 May; 174():363-370. PubMed ID: 28187382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review.
    Bhatnagar A; Sillanpää M
    Chemosphere; 2017 Jan; 166():497-510. PubMed ID: 27710885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of natural organic matter (NOM) from water by ion exchange - A review.
    Levchuk I; Rueda Márquez JJ; Sillanpää M
    Chemosphere; 2018 Feb; 192():90-104. PubMed ID: 29100126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved fractionation method using amphipathic NDAM for the efficient separation of disinfection by-product precursors in natural organic matter.
    Zhang Z; Ma Y; Li A; Pan Y; Yao Q; Jia X; Zhou Q
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38174-38184. PubMed ID: 36576624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different combined treatment processes to address the source water with high concentration of natural organic matter during snowmelt period.
    Lin P; Zhang X; Wang J; Zeng Y; Liu S; Chen C
    J Environ Sci (China); 2015 Jan; 27():51-8. PubMed ID: 25597662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights.
    Korshin G; Chow CW; Fabris R; Drikas M
    Water Res; 2009 Apr; 43(6):1541-8. PubMed ID: 19131089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of NOM character in selected Australian and Norwegian drinking waters.
    Fabris R; Chow CW; Drikas M; Eikebrokk B
    Water Res; 2008 Sep; 42(15):4188-96. PubMed ID: 18706670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.
    Zhang S; Shao T; Karanfil T
    Water Res; 2011 Jan; 45(3):1378-86. PubMed ID: 21093009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.
    Korotta-Gamage SM; Sathasivan A
    Chemosphere; 2017 Jan; 167():120-138. PubMed ID: 27716585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodegradation of natural organic matter from diverse freshwater sources.
    Winter AR; Fish TA; Playle RC; Smith DS; Curtis PJ
    Aquat Toxicol; 2007 Aug; 84(2):215-22. PubMed ID: 17640746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane.
    Kim MH; Yu MJ
    Environ Res; 2005 Jan; 97(1):116-23. PubMed ID: 15476741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.
    Li C; Wang D; Xu X; Wang Z
    Sci Total Environ; 2017 Jun; 587-588():177-184. PubMed ID: 28238434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation.
    Zheng Q; Yang X; Deng W; Le XC; Li XF
    J Environ Sci (China); 2016 Apr; 42():1-5. PubMed ID: 27090688
    [No Abstract]   [Full Text] [Related]  

  • 19. An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications.
    Brezinski K; Gorczyca B
    Chemosphere; 2019 Feb; 217():122-139. PubMed ID: 30414544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in structure and reactivity of dissolved organic matter: radiation chemistry of non-isolated natural organic matter and selected model compounds.
    Ayatollahi S; Kalnina D; Song W; Cottrell BA; Gonsior M; Cooper WJ
    Water Sci Technol; 2012; 66(9):1941-9. PubMed ID: 22925867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.