BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28828561)

  • 1. Asymmetric reduction of ketopantolactone using a strictly (R)-stereoselective carbonyl reductase through efficient NADPH regeneration and the substrate constant-feeding strategy.
    Zhao M; Gao L; Zhang L; Bai Y; Chen L; Yu M; Cheng F; Sun J; Wang Z; Ying X
    Biotechnol Lett; 2017 Nov; 39(11):1741-1746. PubMed ID: 28828561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant expression and molecular insights into the catalytic mechanism of an NADPH-dependent conjugated polyketone reductase for the asymmetric synthesis of (R)-pantolactone.
    Cheng P; Wang J; Wu Y; Jiang X; Pei X; Su W
    Enzyme Microb Technol; 2019 Jul; 126():77-85. PubMed ID: 31000167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies.
    Jung J; Park HJ; Uhm KN; Kim D; Kim HK
    Biochim Biophys Acta; 2010 Sep; 1804(9):1841-9. PubMed ID: 20601218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel bioreduction system for the production of chiral alcohols.
    Kataoka M; Kita K; Wada M; Yasohara Y; Hasegawa J; Shimizu S
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):437-45. PubMed ID: 12838375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity.
    Choi YH; Choi HJ; Kim D; Uhm KN; Kim HK
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):185-93. PubMed ID: 20111861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a new NADPH-dependent aldo-keto reductase from Candida orthopsilosis catalyzing the stereospecific synthesis of (R)-pantolactone by genome mining.
    Wang J; Cheng P; Wu Y; Wang A; Liu F; Pei X
    J Biotechnol; 2019 Feb; 291():26-34. PubMed ID: 30593844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective synthesis of (R)-3-quinuclidinol through asymmetric reduction of 3-quinuclidinone with 3-quinuclidinone reductase of Rhodotorula rubra.
    Uzura A; Nomoto F; Sakoda A; Nishimoto Y; Kataoka M; Shimizu S
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):617-26. PubMed ID: 19234697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient bioreduction of 2-hydroxyacetophenone to (S)- and (R)-1-phenyl-1,2-ethanediol by two substrate tolerance carbonyl reductases with cofactor regeneration.
    Cui ZM; Zhang JD; Fan XJ; Zheng GW; Chang HH; Wei WL
    J Biotechnol; 2017 Feb; 243():1-9. PubMed ID: 28011130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli for the production of an optically pure keto alcohol.
    Skorupa Parachin N; Carlquist M; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):487-97. PubMed ID: 19352650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of (R)-Ethyl-4-Chloro-3-Hydroxybutanoate Using Saccharomyces cerevisiae YOL151W Reductase Immobilized onto Magnetic Microparticles.
    Choo JW; Kim HK
    J Microbiol Biotechnol; 2015 Nov; 25(11):1810-8. PubMed ID: 26239012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration.
    Ni Y; Li CX; Wang LJ; Zhang J; Xu JH
    Org Biomol Chem; 2011 Aug; 9(15):5463-8. PubMed ID: 21670841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable biocatalytic synthesis of optically pure ethyl (R)-2-hydroxy-4-phenylbutyrate using a recombinant E. coli with high catalyst yield.
    Ni Y; Su Y; Li H; Zhou J; Sun Z
    J Biotechnol; 2013 Dec; 168(4):493-8. PubMed ID: 24120725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield.
    Zhang XJ; Zheng L; Wu D; Zhou R; Liu ZQ; Zheng YG
    Biotechnol Prog; 2020 Jan; 36(1):e2900. PubMed ID: 31486281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric synthesis of (S)-4-chloro-3-hydroxybutanoate by sorbose reductase from Candida albicans with two co-existing recombinant Escherichia coli strains.
    Cai P; An M; Xu S; Yan M; Hao N; Li Y; Xu L
    Biosci Biotechnol Biochem; 2015; 79(7):1090-3. PubMed ID: 25765951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced diastereoselective synthesis of t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate by using aldo-keto reductase and glucose dehydrogenase co-producing engineered Escherichia coli.
    Wang YJ; Shen W; Luo X; Liu ZQ; Zheng YG
    Biotechnol Prog; 2017 Sep; 33(5):1235-1242. PubMed ID: 28842958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient production of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase.
    Zhang XJ; Zhou R; Wu D; Tang YQ; Wang MY; Liu ZQ; Zheng YG
    Biotechnol Prog; 2021 Jan; 37(1):e3068. PubMed ID: 32822119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis.
    Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D
    Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases.
    Johanson T; Katz M; Gorwa-Grauslund MF
    FEMS Yeast Res; 2005 Apr; 5(6-7):513-25. PubMed ID: 15780652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol.
    Chen K; Li K; Deng J; Zhang B; Lin J; Wei D
    Microb Cell Fact; 2016 Nov; 15(1):191. PubMed ID: 27835967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.
    Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY
    J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.