BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 28828732)

  • 1. Coding of Class I and II Aminoacyl-tRNA Synthetases.
    Carter CW
    Adv Exp Med Biol; 2017; 966():103-148. PubMed ID: 28828732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed.
    Carter CW; Li L; Weinreb V; Collier M; Gonzalez-Rivera K; Jimenez-Rodriguez M; Erdogan O; Kuhlman B; Ambroggio X; Williams T; Chandrasekharan SN
    Biol Direct; 2014 Jun; 9():11. PubMed ID: 24927791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roots of Genetic Coding in Aminoacyl-tRNA Synthetase Duality.
    Carter CW; Wills PR
    Annu Rev Biochem; 2021 Jun; 90():349-373. PubMed ID: 33781075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoacylating urzymes challenge the RNA world hypothesis.
    Li L; Francklyn C; Carter CW
    J Biol Chem; 2013 Sep; 288(37):26856-63. PubMed ID: 23867455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases.
    Chandrasekaran SN; Yardimci GG; Erdogan O; Roach J; Carter CW
    Mol Biol Evol; 2013 Jul; 30(7):1588-604. PubMed ID: 23576570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene.
    Martinez-Rodriguez L; Erdogan O; Jimenez-Rodriguez M; Gonzalez-Rivera K; Williams T; Li L; Weinreb V; Collier M; Chandrasekaran SN; Ambroggio X; Kuhlman B; Carter CW
    J Biol Chem; 2015 Aug; 290(32):19710-25. PubMed ID: 26088142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Leucyl-tRNA Synthetase Urzyme: Authenticity of tRNA Synthetase Catalytic Activities and Promiscuous Phosphorylation of Leucyl-5'AMP.
    Hobson JJ; Li Z; Hu H; Carter CW
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases.
    Pham Y; Li L; Kim A; Erdogan O; Weinreb V; Butterfoss GL; Kuhlman B; Carter CW
    Mol Cell; 2007 Mar; 25(6):851-62. PubMed ID: 17386262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding.
    Carter CW; Wills PR
    IUBMB Life; 2019 Aug; 71(8):1088-1098. PubMed ID: 31190358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code.
    Härtlein M; Cusack S
    J Mol Evol; 1995 May; 40(5):519-30. PubMed ID: 7540217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates.
    Cvetesic N; Gruic-Sovulj I
    Methods; 2017 Jan; 113():13-26. PubMed ID: 27713080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous mutual ordering of nucleic acids and proteins.
    Wills PR
    Orig Life Evol Biosph; 2014 Dec; 44(4):293-8. PubMed ID: 25585807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling.
    Carter CW; Popinga A; Bouckaert R; Wills PR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases.
    Perona JJ; Hadd A
    Biochemistry; 2012 Nov; 51(44):8705-29. PubMed ID: 23075299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fidelity of the translation of the genetic code.
    Sankaranarayanan R; Moras D
    Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upgrading aminoacyl-tRNA synthetases for genetic code expansion.
    Vargas-Rodriguez O; Sevostyanova A; Söll D; Crnković A
    Curr Opin Chem Biol; 2018 Oct; 46():115-122. PubMed ID: 30059834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urzymology: experimental access to a key transition in the appearance of enzymes.
    Carter CW
    J Biol Chem; 2014 Oct; 289(44):30213-30220. PubMed ID: 25210034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases.
    Kaiser F; Bittrich S; Salentin S; Leberecht C; Haupt VJ; Krautwurst S; Schroeder M; Labudde D
    PLoS Comput Biol; 2018 Apr; 14(4):e1006101. PubMed ID: 29659563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding.
    Carter CW; Wills PR
    Mol Biol Evol; 2018 Feb; 35(2):269-286. PubMed ID: 29077934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility.
    Caetano-Anollés G; Wang M; Caetano-Anollés D
    PLoS One; 2013; 8(8):e72225. PubMed ID: 23991065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.