These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 28828853)
1. Activation of Actuating Hydrogels with WS Zong L; Li X; Han X; Lv L; Li M; You J; Wu X; Li C ACS Appl Mater Interfaces; 2017 Sep; 9(37):32280-32289. PubMed ID: 28828853 [TBL] [Abstract][Full Text] [Related]
2. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks. Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332 [TBL] [Abstract][Full Text] [Related]
3. Two-Dimensional MoO Sun Z; Wei C; Liu W; Liu H; Liu J; Hao R; Huang M; He S ACS Appl Mater Interfaces; 2021 Jul; 13(28):33404-33416. PubMed ID: 34247475 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast yet Controllable Dual-Responsive All-Carbon Actuators for Implementing Unusual Mechanical Movements. Li H; Wang J ACS Appl Mater Interfaces; 2019 Mar; 11(10):10218-10225. PubMed ID: 30793583 [TBL] [Abstract][Full Text] [Related]
5. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. Zheng WJ; An N; Yang JH; Zhou J; Chen YM ACS Appl Mater Interfaces; 2015 Jan; 7(3):1758-64. PubMed ID: 25561431 [TBL] [Abstract][Full Text] [Related]
6. PEG-Induced Controllable Thin-Thickness Gradient and Water Retention: A Simple Way to Programme Deformation of Hydrogel Actuators. Yang Y; Wang T; Tian F; Wang X; Hu Y; Xia X; Xu S Macromol Rapid Commun; 2021 Jul; 42(14):e2000749. PubMed ID: 34128581 [TBL] [Abstract][Full Text] [Related]
7. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734 [TBL] [Abstract][Full Text] [Related]
8. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]
9. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Zhao Y; Lo CY; Ruan L; Pi CH; Kim C; Alsaid Y; Frenkel I; Rico R; Tsao TC; He X Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043561 [TBL] [Abstract][Full Text] [Related]
10. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators. Tian Z; Du C; Xue J; Liu Y Nano Lett; 2024 Oct; 24(42):13422-13430. PubMed ID: 39387646 [TBL] [Abstract][Full Text] [Related]
11. A Tissue Paper/Hydrogel Composite Light-Responsive Biomimetic Actuator Fabricated by In Situ Polymerization. Wu Q; Ma C; Chen L; Sun Y; Wei X; Ma C; Zhao H; Yang X; Ma X; Zhang C; Duan G Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559822 [TBL] [Abstract][Full Text] [Related]
12. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel. Zhao L; Huang J; Zhang Y; Wang T; Sun W; Tong Z ACS Appl Mater Interfaces; 2017 Apr; 9(13):11866-11873. PubMed ID: 28290198 [TBL] [Abstract][Full Text] [Related]
13. Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations. Wei X; Wu Q; Chen L; Sun Y; Chen L; Zhang C; Li S; Ma C; Jiang S ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36779704 [TBL] [Abstract][Full Text] [Related]
14. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing. Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036 [TBL] [Abstract][Full Text] [Related]
15. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Fan W; Shan C; Guo H; Sang J; Wang R; Zheng R; Sui K; Nie Z Sci Adv; 2019 Apr; 5(4):eaav7174. PubMed ID: 31016242 [TBL] [Abstract][Full Text] [Related]
16. A Fast, Reversible, and Robust Gradient Nanocomposite Hydrogel Actuator with Water-Promoted Thermal Response. Tan Y; Wang D; Xu H; Yang Y; An W; Yu L; Xiao Z; Xu S Macromol Rapid Commun; 2018 Apr; 39(8):e1700863. PubMed ID: 29488267 [TBL] [Abstract][Full Text] [Related]
17. Robust Hydrogel Actuators Functioning in Multi-Environments Enabled by Thermo-Responsive Polymer Nanoparticle Coatings on Hydrogel Surfaces. Zhang M; Shen H; Hakobyan K; Jiang Z; Liang K; Xu J Small; 2024 Aug; 20(34):e2400534. PubMed ID: 38597736 [TBL] [Abstract][Full Text] [Related]
18. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations. Bi Y; Du X; He P; Wang C; Liu C; Guo W Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098 [TBL] [Abstract][Full Text] [Related]
19. A Biomimetic Bilayer Hydrogel Actuator Based on Thermoresponsive Gelatin Methacryloyl-Poly( Huang YC; Cheng QP; Jeng US; Hsu SH ACS Appl Mater Interfaces; 2023 Feb; 15(4):5798-5810. PubMed ID: 36633046 [TBL] [Abstract][Full Text] [Related]
20. Electrically Controlled Aquatic Soft Actuators with Desynchronized Actuation and Light-Mediated Reciprocal Locomotion. Yu Z; Shang J; Shi Q; Xia Y; Zhai DH; Wang H; Huang Q; Fukuda T ACS Appl Mater Interfaces; 2022 Mar; 14(10):12936-12948. PubMed ID: 35244389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]