These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28829136)

  • 21. Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications.
    Garoli D; Yamazaki H; Maccaferri N; Wanunu M
    Nano Lett; 2019 Nov; 19(11):7553-7562. PubMed ID: 31587559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of structured single-strand DNA via solid-state nanopore.
    Liu SC; Li Q; Ying YL; Long YT
    Electrophoresis; 2019 Aug; 40(16-17):2112-2116. PubMed ID: 30912583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores.
    Goto Y; Akahori R; Yanagi I
    Adv Exp Med Biol; 2019; 1129():131-142. PubMed ID: 30968365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying the Location of a Single Protein along the DNA Strand Using Solid-State Nanopores.
    Yu JS; Lim MC; Huynh DT; Kim HJ; Kim HM; Kim YR; Kim KB
    ACS Nano; 2015 May; 9(5):5289-98. PubMed ID: 25938865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Length-Dependent, Single-Molecule Analysis of Short Double-Stranded DNA Fragments through Hydrogel-Filled Nanopores: A Potential Tool for Size Profiling Cell-Free DNA.
    Al Sulaiman D; Gatehouse A; Ivanov AP; Edel JB; Ladame S
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26673-26681. PubMed ID: 34085806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct force measurements on double-stranded RNA in solid-state nanopores.
    van den Hout M; Vilfan ID; Hage S; Dekker NH
    Nano Lett; 2010 Feb; 10(2):701-7. PubMed ID: 20050676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport.
    Cadinu P; Campolo G; Pud S; Yang W; Edel JB; Dekker C; Ivanov AP
    Nano Lett; 2018 Apr; 18(4):2738-2745. PubMed ID: 29569930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and practical applications of molybdenum disulfide nanopores.
    Graf M; Lihter M; Thakur M; Georgiou V; Topolancik J; Ilic BR; Liu K; Feng J; Astier Y; Radenovic A
    Nat Protoc; 2019 Apr; 14(4):1130-1168. PubMed ID: 30903110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic Signal Amplification of DNA in a Nanopore.
    Tsutsui M; Yokota K; He Y; Kawai T
    Small Methods; 2022 Nov; 6(11):e2200761. PubMed ID: 36196624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping shifts in nanopore signal to changes in protein and protein-DNA conformation.
    Carlsen A; Tabard-Cossa V
    Proteomics; 2022 Mar; 22(5-6):e2100068. PubMed ID: 34845853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores.
    Bošković F; Zhu J; Chen K; Keyser UF
    Nano Lett; 2019 Nov; 19(11):7996-8001. PubMed ID: 31577148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA nanotechnology assisted nanopore-based analysis.
    Ding T; Yang J; Pan V; Zhao N; Lu Z; Ke Y; Zhang C
    Nucleic Acids Res; 2020 Apr; 48(6):2791-2806. PubMed ID: 32083656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
    Traversi F; Raillon C; Benameur SM; Liu K; Khlybov S; Tosun M; Krasnozhon D; Kis A; Radenovic A
    Nat Nanotechnol; 2013 Dec; 8(12):939-45. PubMed ID: 24240429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanopore-based assay for detection of methylation in double-stranded DNA fragments.
    Shim J; Kim Y; Humphreys GI; Nardulli AM; Kosari F; Vasmatzis G; Taylor WR; Ahlquist DA; Myong S; Bashir R
    ACS Nano; 2015 Jan; 9(1):290-300. PubMed ID: 25569824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection.
    Puster M; Balan A; Rodríguez-Manzo JA; Danda G; Ahn JH; Parkin W; Drndić M
    Small; 2015 Dec; 11(47):6309-16. PubMed ID: 26500023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores.
    He L; Karau P; Tabard-Cossa V
    Nanoscale; 2019 Sep; 11(35):16342-16350. PubMed ID: 31386731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
    Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore.
    Fahie M; Chisholm C; Chen M
    ACS Nano; 2015 Feb; 9(2):1089-98. PubMed ID: 25575121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore.
    Bhattacharya S; Yoo J; Aksimentiev A
    ACS Nano; 2016 Apr; 10(4):4644-51. PubMed ID: 27054820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical Trapping of DNA in a Double-Nanopore System.
    Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A
    Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.