These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28829302)

  • 1. Quantitative Testing of fMRI-Compatibility of an Electrically Active Mechatronic Device for Robot-Assisted Sensorimotor Protocols.
    Farrens AJ; Zonnino A; Erwin A; O'Malley MK; Johnson CL; Ress D; Sergi F
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1595-1606. PubMed ID: 28829302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards MRI guided surgical manipulator.
    Chinzei K; Miller K
    Med Sci Monit; 2001; 7(1):153-63. PubMed ID: 11208513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging.
    Yu N; Gassert R; Riener R
    Int J Comput Assist Radiol Surg; 2011 Jul; 6(4):473-88. PubMed ID: 20811816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of a haptic robot in a 3T fMRI.
    Snider J; Plank M; May L; Liu TT; Poizner H
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 21989084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.
    Miki K; Masamune K
    Int J Comput Assist Radiol Surg; 2015 Oct; 10(10):1687-97. PubMed ID: 25549798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.
    Gandolla M; Ferrante S; Casellato C; Ferrigno G; Molteni F; Martegani A; Frattini T; Pedrocchi A
    Med Eng Phys; 2011 Oct; 33(8):1027-32. PubMed ID: 21550290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits.
    McGee KP; Stormont RS; Lindsay SA; Taracila V; Savitskij D; Robb F; Witte RJ; Kaufmann TJ; Huston J; Riederer SJ; Borisch EA; Rossman PJ
    Phys Med Biol; 2018 Apr; 63(8):08NT02. PubMed ID: 29537384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.
    Jung JH; Choi Y; Jung J; Kim S; Lim HK; Im KC; Oh CH; Park HW; Kim KM; Kim JG
    Med Phys; 2015 May; 42(5):2354-63. PubMed ID: 25979030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert.
    Grant AM; Lee BJ; Chang CM; Levin CS
    Med Phys; 2017 Jan; 44(1):112-120. PubMed ID: 28102949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Review of fMRI Compatible Devices: Design and Testing Criteria.
    Hartwig V; Carbonaro N; Tognetti A; Vanello N
    Ann Biomed Eng; 2017 Aug; 45(8):1819-1835. PubMed ID: 28550499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.
    Scheef L; Nordmeyer-Massner JA; Smith-Collins AP; Müller N; Stegmann-Woessner G; Jankowski J; Gieseke J; Born M; Seitz H; Bartmann P; Schild HH; Pruessmann KP; Heep A; Boecker H
    PLoS One; 2017; 12(1):e0169392. PubMed ID: 28076368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated PET/MR breast cancer imaging: Attenuation correction and implementation of a 16-channel RF coil.
    Oehmigen M; Lindemann ME; Lanz T; Kinner S; Quick HH
    Med Phys; 2016 Aug; 43(8):4808. PubMed ID: 27487899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic fMRI: using classification to quantify task-correlated noise during goal-directed reaching motions.
    Menon S; Quigley P; Yu M; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2046-50. PubMed ID: 25570386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement.
    Toyomura A; Yokosawa K; Shimojo A; Fujii T; Kuriki S
    J Neurosci Methods; 2018 Sep; 307():14-22. PubMed ID: 29924979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.
    Gravett M; Cepek J; Fenster A
    Med Phys; 2017 Nov; 44(11):5544-5555. PubMed ID: 28849592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phantom haptic device upgrade for use in fMRI.
    Hribar A; Koritnik B; Munih M
    Med Biol Eng Comput; 2009 Jun; 47(6):677-84. PubMed ID: 19263104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An MRI-conditional motion phantom for the evaluation of high-intensity focused ultrasound protocols.
    Sagias G; Yiallouras C; Ioannides K; Damianou C
    Int J Med Robot; 2016 Sep; 12(3):431-41. PubMed ID: 27593511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.