These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 28829340)
1. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene. Gao G; Li Z; Chen M; Xie Y; Wang Y J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340 [TBL] [Abstract][Full Text] [Related]
2. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
3. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. Li XF; Wang LL; Chen KQ; Luo Y J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831 [TBL] [Abstract][Full Text] [Related]
4. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction. Xu XR; Cheng SG J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589 [TBL] [Abstract][Full Text] [Related]
5. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling. Wakai T; Sakamoto S; Tomiya M J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774 [TBL] [Abstract][Full Text] [Related]
6. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon. Tawfik SA; Cui XY; Ringer SP; Stampfl C Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042 [TBL] [Abstract][Full Text] [Related]
7. Rectification inversion in oxygen substituted graphyne-graphene-based heterojunctions. Zhao WK; Cui B; Fang CF; Ji GM; Zhao JF; Kong XR; Zou DQ; Jiang XH; Li DM; Liu DS Phys Chem Chem Phys; 2015 Feb; 17(5):3115-22. PubMed ID: 25516239 [TBL] [Abstract][Full Text] [Related]
8. Quantum transport through a graphene nanoribbon-superconductor junction. Sun QF; Xie XC J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779 [TBL] [Abstract][Full Text] [Related]
9. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter. Chakrabarty S; Wasey AHMA; Thapa R; Das GP Nanotechnology; 2018 Aug; 29(34):345203. PubMed ID: 29862988 [TBL] [Abstract][Full Text] [Related]
10. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons. Javan M; Jorjani R; Soltani AR J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548 [TBL] [Abstract][Full Text] [Related]
11. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron. Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083 [TBL] [Abstract][Full Text] [Related]
12. Transport properties of armchair graphene nanoribbon junctions between graphene electrodes. Motta C; Sánchez-Portal D; Trioni MI Phys Chem Chem Phys; 2012 Aug; 14(30):10683-9. PubMed ID: 22743740 [TBL] [Abstract][Full Text] [Related]
13. New disordered anyon phase of doped graphene zigzag nanoribbon. Kim YH; Lee HJ; Lee HY; Yang SE Sci Rep; 2022 Aug; 12(1):14551. PubMed ID: 36008453 [TBL] [Abstract][Full Text] [Related]
14. Spin transport in be edge-doped graphene nanoribbon. Wu TT; Wang XF; Jiang Y; Zhou L J Nanosci Nanotechnol; 2012 Aug; 12(8):6467-71. PubMed ID: 22962766 [TBL] [Abstract][Full Text] [Related]
15. Single-parameter charge pump in a zigzag graphene nanoribbon. Gu Y; Yang YH; Wang J; Chan KS J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges. Fujita N; Hasnip PJ; Probert MI; Yuan J J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149 [TBL] [Abstract][Full Text] [Related]
17. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions. Sanaeepur M Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399 [TBL] [Abstract][Full Text] [Related]
18. Spin-polarized electrical transport properties of organic radicals in presence of zigzag-graphene nanoribbon leads. Sarkar S; Kumar A; Cho D J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38265086 [TBL] [Abstract][Full Text] [Related]
19. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons. Kumar SB; Jalil MB; Tan SG; Liang G J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192 [TBL] [Abstract][Full Text] [Related]
20. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons. Zhu L; Li R; Yao K Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]